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Sorting of Permutations by
Cost-Constrained Transpositions

Farzad Farnoud (Hassanzadeh), Student Member, IEEE, and Olgica Milenkovic, Member, IEEE

Abstract—The problem of finding a minimum decomposition
of a permutation in terms of transpositions with predetermined
non-uniform and non-negative costs is addressed. Alternatively,
computing the transposition distance between two permutations,
where transpositions are endowed with arbitrary non-negative
costs, is studied. For such cost functions, polynomial-time, con-
stant-approximation decomposition algorithms are described.
For metric-path costs, exact polynomial-time decomposition
algorithms are presented. The algorithms in this paper repre-
sent a combination of Viterbi-type algorithms and graph-search
techniques for minimizing the cost of individual transpositions,
and dynamic programing algorithms for finding minimum cost
decompositions of cycles. The presented algorithms have a myriad
of applications in information theory, bioinformatics, and algebra.

Index Terms—Cost function, decomposition, distance, permuta-
tion, sorting, transposition.

I. INTRODUCTION

P ERMUTATIONS are ubiquitous combinatorial objects
encountered in areas as diverse as mathematics, computer

science, communication theory, and bioinformatics. The set
of all permutations of elements—the symmetric group of
order , —plays an important role in algebra, representation
theory, and analysis of algorithms [3]–[6]. As a consequence,
the properties of permutations and the symmetric group have
been studied extensively.

One of the simplest ways to generate an arbitrary permu-
tation is to apply a sequence of transpositions—swaps of two
elements—to a given permutation, usually the identity permu-
tation. The sequence of swaps can be reversed in order to re-
cover the identity permutation from the original permutation.
This process is referred to as sorting by transpositions.

A simple result, established by Cayley in the 1860’s, asserts
that the minimum number of transpositions needed to sort a
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permutation so as to obtain the identity permutation is the dif-
ference of the size of the permutation and the number of cy-
cles formed by the elements of the permutation. Cayley’s result
is based on a simple constructive argument, which reduces to
a linear-complexity procedure for breaking cycles into sub-cy-
cles. The number of transpositions used in sorting a permuta-
tion is equivalent to the transposition distance between the per-
mutation and the identity permutation. Since permutations form
a group, the transposition distance between two arbitrary per-
mutations equals the transposition distance between the identity
permutation and the composition of the inverse of one permuta-
tion and the other permutation.

We address a substantially more challenging question: as-
suming that each transposition has a non-negative, but otherwise
arbitrary cost, is it possible to find the minimum sorting cost and
the sequence of transpositions used for this sorting in polyno-
mial time? In other words, can one compute the cost-constrained
transposition distance between two permutations in polynomial
time? Although at this point it is not known if the problem is
NP hard, at first glance, it appears to be computationally diffi-
cult, due to the fact that it is related to finding minimum gen-
erators of groups and the subset-sum problem [7]. Neverthe-
less, we show that large families of cost functions—such as
costs based on metric-paths—have exact polynomial-time de-
composition algorithms. Furthermore, we devise algorithms for
approximating the minimum sorting cost for any non-negative
cost function, with an approximation constant that does not ex-
ceed four. The presented algorithms represent an amalgama-
tion of well known algorithms from information and coding
theory, such as the Viterbi algorithm and dynamic program-
ming methods. Furthermore, our proof techniques are based on
a number of graph theoretic methods frequently used in coding
and information theory.

Our investigation is motivated by four different applications.
The first application pertains to sorting of genomic sequences
[8]–[11], while the second application is related to a generaliza-
tion of the notion of a chemical channel (also known as trapdoor
channel [12]–[14]). The third application is in the area of coding
for storage devices [15]–[18], while the fourth arises in the area
of network security [19]–[21]. These problems are discussed in
detail in the Motivation section.

The paper is organized as follows. Section II describes a class
of motivating applications, while Section III introduces the no-
tation followed in the remainder of the paper, as well as relevant
definitions. Sections IV, V, and VI contain the main results of
our study: a three-stage polynomial-time approximation algo-
rithm for general cost-constrained sorting of permutations, an
exact polynomial-time algorithm for sorting with metric-path
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Fig. 1. Transposition of adjacent blocks (a) and non-adjacent blocks (b) in a
DNA sequence.

costs, as well as a complexity analysis of the described tech-
niques. Section VII contains the concluding remarks.

II. MOTIVATION

A. Genomic Rearrangement

Genomic strings—such as DNA sequences—evolve from
common ancestors, and therefore frequently contain conserved
substrings that encode proteins vital for the survival of all
organisms. Although these substrings have an almost identical
composition, in different species they appear at disparate loca-
tions. This may be attributed to the fact that genomic strings
tend to break, either due to external factors such as radiation
or due to internal processes that adversely affect the integrity
of the sequences. Once a string breaks off from its original
location, it may cause cellular death if the breakage occurred
within a coding region, or it may leave the organism intact,
provided that breakage did not disrupt the functionality of the
string. Upon breaking off, the functional unit may reattach or
insert itself at some other location in the genome. This breakage
phenomenon is believed to be the explanation for the observed
evolutionary reshuffling of functional substrings in genomes.

Permutations of functional substrings also occur during
tumorogenesis and are often considered major markers of the
disease [8]. Genomes of cancer cells tend to contain the same
sequence of blocks as normal cells, but erroneously redis-
tributed among the chromosomes in a cell. These mutational
events that characterize cancer are known as translocations
(when substrings of two different chromosomes are exchanged),
transpositions (when substrings—not necessarily of the same
length—of the same chromosome are exchanged)1, or reversals
(when symbols of a single substring are reversed in order).
Figs. 1 and 2 illustrate these concepts pictorially. Notice that
translocations and transpositions require four breakpoints,
while adjacent transpositions require three breakpoints. Rever-
sals occur in the presence of only two breakpoint. It is widely
believed that the higher the number of breakpoints needed for
the mutation to occur, the less likely the mutation tends to be.

Recently, it was observed that breakage does not occur ran-
domly throughout the genome—there exist certain sites in the
sequence that are much more prone to breakage than others.

1Notice the different usage of the term “transposition” in the bioinformatics
literature. There, a transposition describes an exchange in order of two sub-
strings and not two individual symbols. [22]

Fig. 2. Transposition of blocks of different length in a DNA sequence.

These so called “fault lines” or “fragile regions” are very fre-
quently related to the composition of the sequence—for ex-
ample, regions rich in and nucleotides that form hairpin
or crucifix-shaped protrusions in the DNA sequence [9]–[11].

This finding motivated a large body of work on developing ef-
ficient algorithms for reverse-engineering the sequence of shuf-
fling steps performed on conserved subsequences. With a few
exceptions, most of the methods for sorting use reversals rather
than transpositions, they follow the uniform cost model (each
change in the ordering of the blocks is equally likely) and the
most parsimonious sorting scenario (the sorting scenario with
smallest number of changes is the most likely explanation for
the observed order). Several approaches that do not fit into this
framework were described in [23], [24]. Sorting by cost-con-
strained transpositions can be seen as a special instance of the
general subsequence sorting problem, where the sequence is al-
lowed to break at three or four points. Furthermore, it allows
for accommodating the sequence composition information via
the cost function. Although an exact and mathematically precise
determination of breakage probability and consequently trans-
position cost is highly unlikely to be conducted, one can start
with simple models were the cost increases inversely propor-
tional to the content of the borders of the subsequences.
Other, more precise models are possible as well but they fall out
of the scope of this paper. Note that reverse engineering the se-
quence of transpositions and breakages under this model may
provide valuable information about the pathway of tumorogen-
esis and shed new insight into the genetic causes of chromosome
rearrangement in cancer.

B. The Trapdoor Channel

The second application arises in the study of so called chem-
ical channels. The chemical channel is a channel model intro-
duced in information theory, motivated by a simple view of a
causal information processing in cells. In this model, binary
symbols are used to describe molecules, as it is assumed that
only two types of molecules are possible [12]–[14]. The channel
is initialized with a primer molecule, and afterwards, molecules
from a queue are sequentially pushed into the channel (well). At
each step of the procedure, one of the two molecules in the well
is randomly selected as channel output. This processing system
has unit memory, which results in allowing only transpositions
of adjacent elements in the permutation (which by the duality of
position/symbol value described in Section III amounts to adja-
cent symbol transpositions). The question at hand is how can
one find the original channel input provided that the channel
output is known? Alternatively, this question reduces to one of
decoding the output of the trapdoor channel. Computing the ad-
jacent transposition distance between the input and output se-
quences represents a crucial step in this decoding process.
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Fig. 3. The binary trapdoor channel (a) and a generalization of the trapdoor channel (b) both with memory larger than one.

This model has several drawbacks in terms of representing
potential biological channels. First, in the context of contex-
tual and causal cellular functioning, all molecules should be
viewed as distinguishable. Consequently, all symbols in the
sequence should be different and the channel input should
be representable by a permutation. An illustration can be
seen in Fig. 3(b). Furthermore, for some functions, more than
two molecules should be allowed to interact simultaneously,
leading to the requirement that the channel well may hold
more than two symbols (i.e., have memory larger than one).
Additionally, since every chemical reaction has to be timed, the
channel model should allow for the option that at some time
instant no molecules is pushed out of the channel or that some
molecules have higher probabilities than others of being sent
out of the channel. These extended assumptions allow one to
view this generalization of the trapdoor channel as a channel
that transposes elements in the output permutation according
to a non-uniform cost model. Note that in this case, although
all transpositions are possible, not all output permutations are
plausible for one given input, since the transpositions used have
costs that depend on the input permutation and are updated
sequentially as molecules are being sent out of the well.

C. Rank Modulation Coding

The third application is concerned with flash memories and
rank permutation coding (see [15] and [16]). In this case, one is
given an array of cells that may store charge levels. Due to aging,
environmental conditions and design, the cells are subjected to
charge leakage, leading to the phenomena of low memory en-
durance [18]. Due to this leakage, the information content of the
cells may be compromised beyond the possibility of correction.

One way to mitigate this problem is to use the idea of
rank modulation, which is based on the framework of storing
information through the ordering of cell charges rather than
the charge levels themselves. In this scenario, a storage error
occurs only if a charge of higher level leaks below the level of
a previously less charged cell. An example is shown in Fig. 4.
Most leakage models assume nearly uniform relative cell
charge changes, allowing only for the possibility of exchanging
the ranking of two consecutive symbols. In this case, the
distance metric for input-output sequences of flash memories
is the so-called Kendall distance between permutations [17].
Kendall’s distance measures the smallest number of (pairwise)
adjacent transpositions needed to transform one permutation
into another.

Recent experiments reveal that cell leakage levels depend
both on the location of the cells in the array as well as their initial
charge level [18]. If one considers more precise charge leakage

Fig. 4. On the left-hand side the initial state of the storage is shown. The electric
charge in each cell determines its rank. Because of different leakage rates in the
shaded cells, their rank is swapped, as seen on the right-hand side.

models for memory cells, the costs of adjacent transpositions
become non-uniform and non-adjacent transpositions may ap-
pear with non-zero probability as well. The first case can easily
be captured by a transposition cost model in which non-adjacent
transpositions have unbounded cost, while the costs of adjacent
transpositions are unrestricted. Hence, the proposed decompo-
sition algorithms can be used as part of general soft-information
rank modulation decoders.

D. Packet Reordering in Networks

Packet reordering is a high-incidence event in networks, and
in particular, in the Internet. Usually, it can be attributed to
multi-path routing where different paths experience different
delays. Due to the fact that packet reordering can compromise
the performance of the otherwise fairly robust TPC protocol,
several network attack strategies were developed for the pur-
pose of delaying efficient service. The basis of these attacks is
that packet reordering causes unnecessary retransmission. TCP
operates in the following manner: when receiving a packet out
of order, the protocol sends several ACK signals to initiate fast
packet retransmission since the packet may have been lost. If
the change in order is not due to packet loss, but rather caused
by reordering, then the retransmissions are unnecessary and
may cause congestion. Furthermore, frequent retransmission
requests may prompt senders to see them as indicators of
network congestion, and this in turn triggers reduction in the
transmission rate. Finally, the delay of the network receivers is
significantly increased due to re-orderings, since the message
content has to be passed on to higher network layers in order,
which introduces the need for packet buffering.

The question of interest in this case is to reverse engineer the
attacker’s strategy. Due to the fact that most attackers will not
have access to most of the nodes in the network, and due to
the partly random process of packet routing, only certain packet
reorderings will be plausible or likely. The underlying transpo-
sitions will consequently have nonuniform cost, although there
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Fig. 5. (a) The digraph���� of the permutation� � ���������. (b) The graph
� ���, for the decomposition � � ������������of �. Edges of ���� and � ���
are represented with dashed and solid lines, respectively.

remains the difficult problem of estimating or approximating the
costs of transpositions. One reasonable assumption for the at-
tacker model is that the compromised nodes may be in close
proximity in the network, and that the cost will depend on the
distance of the compromised nodes from some “central node”
or “central cluster”. This information, of course, can only be ob-
tained through thorough network traffic analysis as performed,
for example, in [19], [20].

For a different study of packet reordering in networks the in-
terested reader is referred to [21].

III. NOTATION AND DEFINITIONS

A permutation of is a bijection from
to itself. The set of permutations of is denoted by . A

permutation can be represented in several ways. In the two-line
notation, the domain is written on top, and its image below.
The one-line representation is the second row of the two-line
representation. A permutation may also be represented as the
set of elements and their images.

For example, one can write a permutation as ,
, , , , or more succinctly

as , or in the two-line notation as

The product of two permutations and is the per-
mutation obtained by first applying and then , i.e., the
product represents the composition of and .

The functional digraph of a function , denoted
by , is a directed graph with vertex set and an edge from

to for each . We use the words vertex and element
interchangeably.

For a permutation of , is a collection of disjoint cy-
cles since the in-degree and out-degree of each vertex is exactly
one. The cycles of a permutations are the cycles of its functional
digraph. Each cycle can be written as a —tuple ,
where is the length of the cycle and there is an edge from
to for , where the indices are evaluated modulo

, so equals .
With slight abuse of notation, a cycle is also used to refer to

the permutation that has as a cycle and all its other cycles are
of length one. In this sense, the composition (product) of cycles
is well-defined: we can write every permutation as a product
of its (disjoint) cycles. This represents the cycle representation

of a permutation. For example, as shown in Fig. 5(a), the cycle
representation of is and thus we may
write .

A cycle of length two is called a transposition. A trans-
position decomposition (or simply a decomposition) of a
permutation is a sequence of transpositions
whose product is . A decomposition of length is called an

—decomposition. Note that the transpositions are applied
from right to left.

A sorting of a permutation is a sequence of transpositions
that transform into , where denotes the identity element of

. In other words, . Note that a decomposition in
reverse order equals a sorting of the same permutation.

An embedding is a drawing of a graph such that no two edges
cross. An embedding of can be obtained by placing ver-
tices of disjoint cycles on disjoint circles as seen in Fig. 5(a).
This embedding is also referred to as . If the direction of the
edges of are not explicitly indicated, we assume a clock-
wise direction and treat as a non-directional graph.

For a decomposition , let be a (multi)graph
with vertex set and edges for each transposition

of . We use the words transposition and edge inter-
changeably. The embedding of with vertex set into

is also denoted by . An example is shown in Fig. 5(b).
A permutation is said to be odd (even) if the number of pairs

, such that and is odd (even). If a
permutation is odd (even), then the number of transpositions in
any of its decompositions is also odd (even).

The following definitions regarding graphs will
be used throughout the paper. An edge with endpoints and

is denoted by . A graph is said to be planar if it
has an embedding. The subgraph of induced by the vertices
in the set is denoted by . The degree of a vertex

in is denoted by or, if there is no ambiguity, by
. Deletion of an edge from a graph is denoted by
and deletion of a vertex and its adjacent edges from

is denoted by . The same notions can be defined for
multigraphs—graphs in which there may exist multiple edges
between two vertices.

We say that an edge in is a cut edge for two vertices
and , denoted by , -cut edge, if in there exists no

path between and . The well known Menger’s theorem [25]
asserts that the minimum number of edges one needs to delete
from to disconnect from is also the maximum number
of pairwise edge-disjoint paths between and . This theorem
holds for multigraphs as well.

In the derivations to follow, we make frequent use of the span-
ning trees of the (multi)graphs , and . A
spanning tree is a standard notion in graph theory: it is a tree
that contains all vertices of the underlying (multi)graph.

We are concerned with the following problem: given a non-
negative cost function on the set of transpositions, the cost
of a transposition decomposition is defined as the sum of costs
of its transpositions. The task is to find an efficient algorithm
for generating the Minimum Cost transposition Decomposition
(MCD) of a permutation . The cost of the MCD of a
permutation under cost function is denoted by . If
there is no ambiguity, the subscript is omitted.
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Fig. 6. The first row shows three functional digraphs: on the left, the functional digraph of the identity permutation, in the middle the digraph of ����, and on the
right, the digraph of �������� � �����. The second and the third rows show the two binning models of the first row. The second row assumes � is mapped to � if
ball � is in bin � . In the third row, the mapping is interpreted so that � is mapped to � if ball � occupies bin �.

For a non-negative cost function , let be the undi-
rected complete graph in which the cost of each edge equals

. The cost of a graph is the sum of the costs
of its edges

The shortest path, i.e., the path with minimum cost, between
and in is denoted by .

The following definitions pertaining to cost functions are
useful in our analysis. A cost function is a metric if for , ,

A cost function is a metric-path cost if it is defined in terms of
a weighted path, denoted by . The weights of edges in

are equal to , and the cost of any transposition
equals

where , , , represents the unique path
between and in . The path is called the defining path
of . A cost function is an extended-metric-path cost function
if for a defining path , is finite only for the edges
of the defining path, and unbounded otherwise.

The definitions of permutations, cycles, and transpositions
are stated above in terms of functions and graphs, or within an
algebraic context. Two other ways to view permutations are in
terms of binning schemes (bins and balls models).

Consider a permutation of , corresponding to balls
labeled from 1 to , and bins, labeled in the same way.

1) In the first representation, if bin is occupied by
ball . In other words, in this representation, the permuta-
tion describes the occupancies of bins. Applying a transpo-
sition to a permutation is equivalent to moving ball
to the bin occupied by ball and vice versa. Accordingly,
the cost can be seen to depend only on the balls

and not on their location. This representation corresponds
to the one-line notation described above.

2) Alternatively, the permutation can indicate the locations of
balls. That is, if ball is in bin . Here, applying a
transposition is equivalent to swapping the contents of
bins and . In this case, depends on the locations
of the balls rather than on which balls are being moved.

An example of a permutation and its binning models is pre-
sented in Fig. 6.

The first representation allows us to apply the results of this
paper to situations where the cost function depends on the ele-
ments being swapped and the second representation allows us
to use the results in scenarios where the cost of swapping two
elements depends on their location.

From an analytical point of view, although the first represen-
tation is more familiar because of its close relationship to the
one-line notation, the second one, where indicates the bin
occupied by ball , is more useful, and unless otherwise stated
we refer to this representation simply as the balls and bins rep-
resentation.

As an application of the second representation, consider a de-
composition of and the graph . Initially,
imagine that the bins are located on the vertices of
the graph, and each ball is in the bin with the same label. This
configuration corresponds to the identity permutation. Consider
the sequence of transpositions : first apply , then

, and so on. Through this sequence of transpositions, the iden-
tity permutation is transformed into , wherein ball is in bin

. In step , in which the transposition is ap-
plied, the balls placed in bins and , moving along the edge

, swap their locations. Note that the balls “move” solely
along the edges of . Thus, there exists a path from to
in .

The predecessor of in a permutation is and
the successor of is . There is an edge from the prede-
cessor of to and an edge from to its successor in .
Applying a transposition to a permutation is equivalent
to exchanging the predecessors of and in .

We define a generalization of the notion of a transposition,
termed h-transposition, where the predecessor of can be
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Fig. 7. The transposition ���� is equivalent to the product ��� ��� ��� ��� ��� ��� of h-transpositions. The first row shows the functional digraph of this
operation and the second row shows its bins and balls representation.

changed independently of the predecessor of . For example,
let , , , and let and . Let

, where denotes what we call
an h-transposition. This h-transposition takes , the predecessor
of , to , without modifying the predecessor of . That is, we
have a mapping in which , and has no
predecessor. Note that is no longer a bijection, and several
elements may be mapped to one element.

A transposition represents the product of a pair of h-transpo-
sitions, as in

Fig. 7 illustrates this fact, using both the functional di-
graph and the balls and bins representation. In the latter case,

indicates that ball 3 is moved from bin 2 to bin 1
and indicates that ball 2 is moved from bin 2 to
bin 3.

An h-decomposition of a permutation is a sequence
of h-transpositions such that . We assign half the
cost of a transposition to the h-transposition

. Note that the cost of depends only
on and . It is clear that the minimum cost h-decomposition
has cost less than or equal to the minimum cost of a transposi-
tion decomposition.

For a permutation and a transposition , it can be easily
verified that consist of one more (or one less) cycle than

if and only if and are in the same cycle (in different cy-
cles). Since the identity permutation has cycles, a Minimum
Length transposition Decomposition (MLD) of has length

, where denotes the number of cycles of . The min-
imum cost of an MLD of , with respect to cost function , is
denoted by . For example, is
decomposed into three transpositions. In particular, if

is a single cycle, then the MLD of the cycle has length .
A cycle of length has MLDs [26]. An MCD is not nec-
essarily an MLD, as illustrated by the following example [27].

Example 1: Consider the cycle with
, for , and otherwise (recall that all

the indices are taken modulo the length of the cycle, which in
this case equals five). It is easy to verify that the decomposi-
tion is an MCD of with cost six,
i.e., . However, as we shall see later, the cost of a
minimum cost MLD is eight, i.e., . One such MLD is

.

Our approach to finding the minimum cost decomposition of
a permutation consists of three stages:

1) First, we find the minimum cost decomposition for each
individual transposition. In particular, we show that the
minimum cost decomposition of a transposition can be
obtained by recursively substituting transpositions with
triples of transpositions. This step is superfluous for the
case when the cost function is a metric.

2) In the second step, we consider cycles only and assume that
each transposition cost is optimized. Cycles have the sim-
plest structure among all permutations, and furthermore,
each permutation is a collection of cycles. Hence, several
approximation algorithms operate on individual cycles and
combine their decompositions. As part of this line of re-
sults, we describe how to find the minimum cost MLD and
show that its cost is not more than a constant factor higher
than that of the corresponding MCD. We also present a
particularly simple-to-implement class of decompositions
whose costs lie between the cost of a minimum MLD and
a constant multiple of the cost of an MCD.

3) We generalize the results obtained for single cycles to per-
mutations with multiple cycles.

IV. OPTIMIZING INDIVIDUAL TRANSPOSITION

In this section, we find the MCD of transpositions, i.e., per-
mutations of the form for , and .
In the context of our problem, these are the simplest permuta-
tions. It is clear that the unique one-decomposition of
is . Since is odd, it has no two-decompositions. For

,

(1)

is a three-decomposition of . It is straightforward to see that
any three-decomposition of must be of the form (1), with a
possible exchange of the roles of the elements and .

If , then is a de-
composition of with smaller cost than . Furthermore,
one may substitute by, say, to obtain a decom-
position with yet smaller cost if .
The same procedure may be repeated until it is no longer pos-
sible to reduce the cost further. The resulting decomposition is
called a triple-optimized decomposition. It is straightforward to
develop an algorithm that finds the triple-optimized decompo-
sition for all transpositions. One such algorithm—Alg. 1—per-
forms a simple search on the ordered set of transpositions in



FARNOUD (HASSANZADEH) AND MILENKOVIC: SORTING OF PERMUTATIONS BY COST-CONSTRAINED TRANSPOSITIONS 9

order to check if their product, of the form of (1), yields a de-
composition of lower cost for some transposition. It then up-
dates the costs of transpositions and performs a new search for
decompositions of length three that may reduce some transpo-
sition cost.

Algorithm 1 OPTIMIZE-TRANSPOSITION-COSTS

1: Input: (the list of transpositions and their cost)

2: Sort

3: for do

4:

5:

6: for do

7:

8:

9: if then

10:

11:

12: if then

13:

14: update in

15: Sort

The triple-optimized costs produced by the algorithm are de-
noted by . Note that , for
any , . Although an optimal decomposition of the form
produced by Alg. 1 is not guaranteed to produce the overall
minimum cost decomposition of any transposition, we show
that this is indeed the case after the expositions associated with
Alg. 1.

Observe that if the cost function is such that

(2)

as in Example 1, Alg. 1 is redundant and can be omitted when
computing the MCD. In particular, if the cost function is a
metric, then Alg. 1 is not needed.

The input to Alg. 1 is an ordered list of transpositions and
their costs. Each row of corresponds to one transposition and
is of the form . The th row of is denoted by

and the transposition corresponding to is denoted by
. Sorting of means reordering its rows so that transpo-

sitions are sorted in increasing order of their costs. The output of
the algorithm is a list with the same format, but with triple-op-
timized costs for each transposition.

Lemma 2: Alg. 1 outputs the triple-optimized cost for all
transpositions in .

Proof: Let be the list at the beginning of iteration ,
obtained immediately before executing line 4 of Alg. 1. Also,
let denote the rows of and

denote the transpositions corresponding to these
rows.

We prove, by induction, that are triple-opti-
mized and do not change in subsequent iterations of
the algorithm, and that are triple-optimized
with respect to , i.e., any triple-optimized de-
composition of a transposition in
terms of has cost at least as large as the cost
of in .

The claim is obviously true for .
Assume that the claim holds for . Note that, by the induction

hypotheses, and that
. Let

and consider a transposition . By
the induction hypotheses, is already triple-optimized with re-
spect to . Thus, the cost of may be reduced
using transpositions only if one can write as

, where . But
these are precisely the decompositions considered in the th it-
eration and thus is triple-optimized with
respect to .

Furthermore, has the minimum cost among
and thus its cost cannot be further re-

duced. Hence, the costs of transpositions
are triple-optimized and do not change in the subsequent itera-
tions of the algorithm.

Example 3: The left-most list in (3) represents the input
to the algorithm, with transpositions in increasing order of their
costs. This is equal to . The two lists that follow represent
updates of produced by Alg. 1.

In the first iteration, the algorithm considers the transposition
, for , and the transposition , for . Using

these transpositions we may write . The
initial cost of is 12 which exceeds
and thus is obtained, i.e., the second list in (3).

Next, for and , the algorithm considers and
. Since , we update the cost of

from 23 to 11 as shown in the third list in (3). Additional
iterations of the algorithm introduce no further changes in the
costs.

�� �

�� ��

(3)

Computational Complexity: For each index the number of
operations performed in the algorithm is . Thus, the total
complexity of the algorithm is . Since is at most
equal to the number of transpositions, we have .
Hence, the complexity of Alg. 1 equals .

Since the transposition costs are arbitrary non-negative
values, it is not clear that the minimum cost decomposition of
a transposition is necessarily the triple-optimized cost obtained
by Alg. 1. This algorithm only guarantees that one can identify
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the optimal sequence of consecutive replacements of transposi-
tions by triples of transpositions. Hence, the minimum cost of a
transposition may be smaller than , i.e., there may
be decompositions of length five, seven, or longer, which allow
for an even smaller decomposition cost of a transposition.

Fortunately, this is not the case: we first prove this claim for
decompositions of length five via exhaustive enumeration and
then proceed to prove the general case via the use of Mengers’s
theorem for multigraphs [3]. We choose to provide the example
of five-decompositions since it illustrates the difficulty of
proving statements about non-minimum-length decomposi-
tions of permutations using exhaustive enumeration techniques.
Graphical representations, on the other hand, allow for much
more general and simpler proofs pertaining to non-minimum
decompositions of transpositions.

We start by considering all possible transposition decompo-
sitions of length five, for which the transposition costs are first
optimized via Alg. 1. In other words, we investigate if there exist
decompositions of of length five that have cost smaller than

. Once again, observe that the costs of all transpositions
used in such decompositions are first optimized via a sequence
of triple-transposition decompositions. To reduce the number
of cases to be investigated, we present the following lemma
restricting the possible configurations in a multigraph corre-
sponding to the decomposition of a transposition .

Lemma 4: Let be a decomposition of a transposition .
The multigraph , where does not contain , has
the following properties:

1) The vertices and both have degree at least one.
2) The degree of at least one of the vertices and is at least

two.
3) Every connected vertex of , other than and , appears

in a closed walk. The closed walk may have repeated ver-
tices but it cannot have any repeated edges.
Proof:

1) In order to swap and , both and must be moved.
2) If both vertices and have degree one, then and are

moved exactly once. This is possible only if .
3) Let . Let be the transposition with the

smallest index that includes . In the permu-
tation , is not in its original location but
rather occupies the position of another element, say, . This
means that there is a path from to in . Similarly,
there must exist a path from to in .
Thus there is a closed walk with no repeated edges from
to itself in .

Let be vertices included in the decomposition
other than and . If denotes the number of edges in

the multigraph , then

From parts 1 and 2 of Lemma 4, it follows that
and, from part 3, one has that . Hence,

, and since has to be an integer

(4)

Fig. 8. Illustrations for scenario S1.

Suppose that is the minimum cost decomposi-
tion of with cost , and that the cost of the optimal decom-
position produced by Alg. 1 exceeds . Then there is no vertex

such that

is a subset of edges in the multigraph since, in that case,

Also, there exists no pair of vertices , such that

is a subset of edges in the multigraph . To prove this claim,
suppose that . Without loss of generality, assume
that

Then,

Hence, any decomposition of length five that contains
must have cost at least .

For any five-decomposition , we have and,
thus, . We consider all five-decompositions of such
that is —free and —free, and that contain at most five
vertices in . Assume that the three vertices of the graph, in ad-
dition to and , are denoted by , , and . We now show that
for each decomposition of length five, there exists a decompo-
sition obtained via Alg. 1 with cost at most , denoted by either

or . The following scenarios are possible.
S1) Suppose that and . Furthermore,

suppose that there exist a vertex that is adjacent to both
and in . Without loss of generality, assume that

the neighbors of and are and , that is, contains
the graph of Fig. 8(a).
We consider two cases, depending on the existence of
the edge in . First, assume that . In this
case, contains the graph of Fig. 8(b). If

, then the decomposition

has cost at most . Note that can be obtained from Alg.
1, since
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On the other hand, if ,
then the decomposition has cost at
most .
Next assume that . Since both and each
must lie on a cycle, the only possible decomposition of

is the one with the graph shown in Fig. 8(c). Now,
if , then the
decomposition

has cost at most . On the other hand, if
, then the decomposition

(5)

has cost at most . Note that can be obtained from
Alg. 1, since

S2) Suppose that and , but there
is no vertex adjacent to both and . Without loss of
generality, assume and are adjacent to and is ad-
jacent to , that is, contains the graph of Fig. 9(a).
Since , , and each must lie on a cycle, one must in-
clude two more edges in the graph, as shown in Fig. 9(b).
Since and have a symmetric role in the decompo-
sition, we may without loss of generality, assume that

. Let be
equal to

Similar to (5), it is easy to see that the cost of is at most
and that it can be obtained from Alg. 1.

S3) Assume that ( contains the
graph of Fig. 10(a)).
Since and must lie on a cycle, the fifth transposi-
tion in the decomposition must be (Fig. 10(b)). If

,
then the decomposition

has cost at most . Otherwise, if
, the decomposition

has cost at most . Note that both and represent
decompositions of the form optimized by Alg. 1.

S4) Suppose that , , and that all
edges adjacent to and are simple (i.e., they are not re-
peated). Without loss of generality, assume that is adja-
cent to both and ( contains the graph of Fig. 11(a)).
One edge must complete cycles that include , , and .

Fig. 9. Illustrations for scenario S2.

Fig. 10. Illustrations for scenario S3.

Fig. 11. Illustrations for scenarios S4 and S5.

Fig. 12. Illustrations for scenario S6.

Since creating such cycles with one edge cannot be ac-
complished, this configuration is impossible.

S5) Suppose that , , one edge adja-
cent to appears twice, and there is a vertex adjacent
to both and . Without loss of generality, assume that
this vertex is ( contains the graph of Fig. 11(b)).
Since must be in a cycle, it must be adjacent to the “last
edge”, i.e., the fifth transposition. If the last edge is ,
then one more edge is needed to create a cycle passing
through . Thus, the last edge cannot be . The only
other choice is and the corresponding graph is
shown in Fig. 11(c). Now, if , then
the decomposition

has cost at most . Otherwise, if ,
the decomposition

has cost at most .
S6) Suppose that , , and no vertex

is adjacent to both and . Then contains either the
graph of Fig. 12(a) or that of Fig. 12(b). Since one edge
cannot create all the necessary cycles, both configura-
tions are impossible.

The Lemmas 5 and 6 are used in Theorem 7, which proves
the optimality of Alg. 1.

Lemma 5: For a transposition and a decomposition of
, the graph has at most one , -cut edge.
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Fig. 13. Illustrations for the proof of Lemma 5: (a) A graph corresponding to a transposition decomposition of ���� with one cut edge only. The cut edge is �� � �
and it separates component � containing � and component � containing �. (b) A graph corresponding to a transposition decomposition of ���� with two cut
edges. The cut edges are �� � �, which separates component � containing � and component � containing � , and �� � �, which separates components �
and � containing �.

Proof: Let . It can be easily shown that in ,
there exists a path between and . Consider the decomposition

of and suppose that is an
, -cut edge as shown in Fig. 13(a). The graph has

two components; one contains , denoted by , and the other
contains , denoted by . Since there exists a path from to ,
there also exists a path from to which does not use the edge

. Thus, in , and are in . Similarly,
and are in . For , let . Since there
is no transposition in with endpoints in both and ,
there is no element such that . Similarly,
there is no element such that . This
implies that and . Since
is the only edge connecting and , we must have

(6)

Also, for all , we must have

(7)

Alternatively, one can prove (6) and (7) by referring to the
balls and bins model. Starting from the identity permutation,
by applying the transpositions in , ball is
moved to bin and vice versa while all other balls are in their
original bins. Since is the only edge connecting the com-
ponents and , by applying , the balls and
are moved from one component to the other. This implies (6).
Furthermore, after applying , ball remains in and
ball remains in , implying (7).

Now suppose there are at least two , -cut edge s in
as shown in Fig. 13(b). Let the decomposition of be

, where and are
, -cut edge s, for some . Define , , and to

be the components containing , , and , respectively, in
. By the same reasoning as above we

must have

However, this cannot be true since for all , we have
and thus . This contradiction shows that
cannot contain more than one , -cut edge.

Intuitively, one can interpret the cut edge result as follows.
Every time a transposition is used its corresponding edge in
is deleted. If the position of is changed through a sequence

of transpositions including , then edge is deleted
and cannot be used in any sequence of transpositions that can
potentially change the position of to that of . The only way
to swap the location of and if there is one , -cut edge edge

is to take to the location of and to the location of
. When there are two or more , -cut edge s, such swaps are

impossible.

Lemma 6: For , , a minimum cost subgraph of
with at most one , -cut edge is a minimum cost subgraph

among those consisting of two copies of a path between and
with one edge deleted (removed).

Proof: First, suppose has no , -cut edge. Then, by
deleting edges from , we obtain a graph with cost smaller
than or equal to the cost of with one , -cut edge.

Thus, we may assume that has exactly one , -cut edge.
Suppose this , -cut edge is and and are in the same
component of . Then, there is no , -cut edge in

, and thus, by Menger’s theorem, there are two edge-disjoint
paths between and . Delete the path with larger cost and
instead add a copy of the path with smaller cost. Similarly, delete
the path with larger cost between and and add a copy of the
path with smaller cost. The graph obtained in this way has cost
smaller than or equal to the cost of and has only one , -cut
edge. Furthermore, it consists of two copies of a path between

and with one edge deleted. Namely, it has two copy of every
edge in a path except for , of which it has only
one copy.

Next, we state a general theorem pertaining to the optimality
of Alg. 1.

Theorem 7: The minimum cost decompositions of all trans-
positions are generated by Alg. 1.

Proof: Consider the transposition and its MCD . Let
. Let be a graph with minimum cost among

those consisting of two copies of a path between and minus
one edge. By Lemma 6, the cost of is less than or equal
to the cost of . We show below that the cost obtained from
Alg. 1 is, in turn, less than or equal to the cost of , and by
optimality of , this proves the theorem.

Suppose that consists of two copies of the path
, for some integers , , minus

one copy of . Thus, we have that

(8)
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The cost of is
and for this we have

(9)

and thus the cost of the decomposition associated with , that
is the MCD of , cannot be smaller than the cost of the op-
timal decomposition produced by Alg. 1. Thus the cost obtained
by Alg. 1 is the smallest possible.

The following lemma provides an alternative way of finding
the MCD of individual transpositions.

Lemma 8: Among graphs consisting of two copies of a path
between and minus one edge, the one with minimum cost is
the graph for some MCD of .

Proof: Let be a graph with minimum cost among
those consisting of two copies of a path between and
minus one edge and suppose that the path between and
is . We show that there exists a
decomposition of such that .

Note that

(10)

Each of the cycles in (10) can be decomposed using the edges
of the path between and as

(11)

Substituting the decompositions given in (11) in the right-
hand side of (10) yields the desired transposition .

Lemma 8 indicates that to find an MCD of a transposition
, it is sufficient to find the path of the form described in the

lemma. That is, we need to find

where the minimum is taken over all paths between and in
. Then, using (10) and (11), we can find an MCD of .

In the appendix, we describe a search algorithm based on this
method, which is based on a modification of the well known
Bellman-Ford procedure [28]. This approach should be com-
pared to the approach of Alg. 1, which has the structure of a
Viterbi-type search method for finding a minimum cost path in
a transposition graph.

The following corollary, following from the preceding
lemma, will be useful in Section V.

Corollary 9: For , , the cost of an MCD of is
less than or equal to twice the cost of any path between and

in . That is,

Upon executing the algorithm, the cost of each transposition
is set to the value found by Alg. 1. Only upon the completion
of the last stage of the MCD approximation algorithm, to be
presented in Sections V–VII, will each transposition be replaced
by its minimum cost decomposition.

In summary, we showed that finding the MCD of transpo-
sitions is not a hard problem. Unfortunately, for permutations
involving more than one transposition and for general non-neg-
ative cost functions, we cannot make the same statement and
there is a possibility that the general problem is NP-hard.
Section V, we take our analysis one step further and consider
finding approximate solutions for individual cycles.

V. OPTIMIZING INDIVIDUAL CYCLES

We consider next the cost optimization problem over single
cycles. First, we find the minimum cost MLD via a dynamic
programming algorithm. The minimum cost MLD is obtained
with respect to the optimized cost function of the previous
section.

We also present a second algorithm to find decompositions
whose cost, along with the cost of the minimum cost MLD, is
not more than a constant factor higher than the cost of the MCD.
Both algorithms are presented for completeness.

The results in this section apply to any cycle . However,
for clarity of presentation, and without loss of generality, we
consider the cycle .

A. Minimum Cost, Minimum Length Transposition
Decomposition

Recall that the vertices of are placed on a circle. For an
MLD of a permutation with cycles, is a forest with
components; each tree in the forest is the decomposition of one
cycle of . This can be easily seen by observing that each cycle
corresponds to a tree. The following lemma provides a rigorous
proof for this statement.

Lemma 10: The graph of an MLD of a cycle is a
tree.

Proof: First, we show that is connected. In ,
is the predecessor of . Since , there exists a path,
formed by a substring of transpositions of , between and
in . Since there is a path from to , for ,

is connected.
To complete the proof, observe that has vertices and

edges since an MLD of a cycle of length contains
transpositions. Hence, is a tree.

For related ideas regarding permutation decompositions and
graphical structures, the interested reader is referred to [29].

The following definitions will be used in the proof of Lemma
11, which states that is planar, provided that is
an MLD of .
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Fig. 14. (a) A tree � divides � into four subregions. (b,c) A region is divided
into two regions by transposition ����. See proof of Lemma 11. (a) � (b) � �

(c) � �.

Let be the region enclosed by the edges of . Also, let
be a tree whose vertex set is a subset of , such

that is planar. Since is a tree with edges contained in
, the edges of partition into smaller regions; each of these

regions is the enclosure of a subset of edges of and
includes the vertices of these edges. The vertices
can be divided into corner vertices, lying at the intersection of
at least two regions, and inner vertices, belonging only to one
region. In Fig. 14(a), with vertices is par-
titioned by into four regions, , , and . In ,
vertices 1 and 3 are corner vertices, while vertex 2 is an inner
vertex.

Lemma 11: For an MLD of ,
is planar. That is, for , where , and

, where , if , then .
Proof: Note that . Let . Since is

an MLD of , has cycles. The proof proceeds by showing
that for all , the following two claims are true:

(I) is planar.
(II) Each cycle of corresponds to a subregion of

. The cycle corresponding to contains all of its
inner vertices and some of its corner vertices but no other
vertex.

Both claims (I) and (II) are obvious for . We show that
if (I) and (II) are true for , then they are also true for .

Let . Clearly, has one more cycle
than , and by assumption, is planar and parti-
tioned into a set of subregions. Note that and are in the same
cycle, and thus are inner or corner vertices of some subregion

of . The edge divides into two subre-
gions, and (without crossing any edge in ).
This proves (I).

Let the cycle corresponding to be

as seen in Fig. 14(b). Then,

Now the cycles and in correspond
to subregions and , respectively, as seen in Fig. 14(c).
This proves claim (II) since the cycle corresponding to each
subregion contains all of its inner vertices and some of its corner
vertices but no other vertex.

Fig. 15. Example illustrating the proof of Lemma 12: � � ��, � � �.

The following lemma establishes a partial converse to the pre-
vious lemma.

Lemma 12: For a cycle and a spanning tree over the
vertices , if is planar, then there exists at
least one MLD of such that .

Proof: We prove the lemma by recursively constructing an
MLD corresponding to . If , then has exactly one edge
and the MLD is the transposition corresponding to that edge. For

, some vertex has degree larger than one. Without loss of
generality, assume that . Let

Since is a tree, has two components. These two
components have vertex sets and , for
some . It is easy to see that

(12)

Let

Note that and have fewer than vertices. Furthermore,
and are planar. Thus,

by the induction hypothesis, and have
decompositions and of length and , respectively.
By (12), is an MLD for .

Example 13: In Fig. 15, we have and . The
cycle can be decomposed into two cycles

Now, each of these cycles is decomposed in a similar manner
into shorter cycles, for example,

The same type of decomposition can be performed on cycles
and .

Since any MLD of a cycle can be represented by a tree that
is planar on the circle, the search for an MLD of minimum cost
only needs to be performed over the set of planar trees. This
search can be executed using a dynamic program, outlined in
Alg. 2. Lemma 14 establishes that Alg. 2 produces a minimum
cost MLD.
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Algorithm 2 MIN-COST-MLD

1: Input: Optimized transposition cost function where
(Output of Alg. 1)

2: for ,

3: for

4: for

5: for do

6: for do

7:

8: for do

9:

10: if then

11:

Lemma 14: The output cost of Alg. 2, , equals .
Proof: The algorithm finds the minimum cost MLD of

by first finding the minimum cost of MLDs of shorter
cycles of the form , where . We look at
the computations performed in the algorithm from a top-down
point of view.

Let be the cost of the decomposition of the cycle
, using edges of , where is an

arbitrary planar spanning tree over the vertices ar-
ranged on a circle. For a fixed , let and be defined as in the
proof of Lemma 12. We may write

(13)

where . Thus,

(14)
Define , where

denotes a tree that minimizes the cost of the decomposition of
. Then, we have

(15)
where and are the values that minimize the right-hand-side
of (14) under the constraint . Since the cost
of each cycle can be computed from the cost of shorter cycles,

can be obtained recursively, with initialization

(16)

The algorithm searches over and and computes
using (15) and (16).

Although these formulas are written in a recursive form, Alg.
2 is described as a dynamic program. The algorithm first com-
putes for small values of and , and then finds the cost
of longer cycles. That is, for each in increasing
order, is computed by choosing its optimal decom-
position in terms of costs of smaller cycles.

Example 15: As an example, let us find the minimum cost de-
composition of the cycle using the above algorithm.
Let be the matrix of transposition costs, with :

(17)

After optimizing the transposition costs in via Alg. 1, we ob-
tain , shown beneath . From Alg. 2, we obtain

Consider the cycle , where and . The algo-
rithm compares ways to represent the cost of this cycle
using the cost of shorter cycles. The minimum cost is obtained
by choosing and , so that

Writing as a matrix, where , we have

Note that we can modify the above algorithm to also find the
underlying MLD by using (13) to write the decomposition of
every cycle with respect to and that minimize the cost of the
cycle. For example, from (13), by substituting the appropriate
values of and , we obtain

The initialization steps are performed in time. The al-
gorithm performs a constant number of steps for each , , , and

such that . Hence, the computational
cost of the algorithm is .
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Fig. 16. The average minimum MLD cost vs the length of the cycle. Transposition costs are chosen independently and uniformly in ��� ��.

Note that Alg. 2 operates on the optimized cost function ,
obtained as the output of Alg. 1. Fig. 16 illustrates the impor-
tance of first reducing individual transposition costs using Alg.
1 before applying the dynamic program. Since the dynamic
program can only use transpositions of minimum cost,
it cannot optimize the individual costs of transpositions and
strongly relies on the reduction of Alg. 1 for producing low
cost solutions. In Fig. 16, the transposition costs were chosen
independently according to a uniform distribution over .

B. Constant-Factor Approximation for Cost of MCD

For the cycle and , consider the
decomposition

(18)

The cost of this decomposition equals
.

To minimize the cost of the decomposition, we choose such
that the transpositions has maximum cost. That is, we
let in (18) where . This
decomposition is termed the Simple Transposition Decomposi-
tion (STD) of and its cost is denoted by .

Theorem 16: For a cycle ,
.

Proof: Clearly, . It is easy to see that an STD
is itself an MLD and, thus, . For , we have

(19)

where the last inequality follows from Lemma 8. To
complete the proof, we need to show that

. Since this result is of independent
importance, we state it in Lemma 17.

Recall from Section III that

and that the cost of each h-transposition is half the cost of the
corresponding transposition.

Lemma 17: It holds that .
Proof: Any decomposition can be written as an h-decom-

position with the same cost by breaking each transposition into
two h-transpositions. Thus, the minimum cost of a decompo-
sition, , is at least as large as the minimum cost of an
h-decomposition. The minimum cost h-decomposition uses the
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shortest path between and . In this case, be-
comes the predecessor of through the following sequence
of h-transpositions:

where is the shortest path be-
tween and . This h-decomposition has cost

and this completes the proof.

Observe that Theorem 16 asserts that a minimum cost MLD
never exceeds the cost of the corresponding MCD by more than
a factor of four. Hence, a minimum cost MLD represents a good
approximation for an MCD, independent of the choice of the
cost function. On the other hand, STDs are attractive alternatives
to MLDs and dynamic programs, due to the fact that they are
particularly simple to find algorithmically.

Example 18: Consider the cycle and the
cost function , with , and

for all remaining transposition. From Lemma 17,

For example, the second term in the sum corresponds to a path
going from 2 to 5 and then from 5 to 3. The cost of this path is
two.

Since has to be an integer, it follows that .
The optimized cost function , obtained from Alg. 1, equals

otherwise

A minimum cost MLD can be computed using the dy-
namic program of Alg. 2. One minimum cost MLD equals

, and has cost . By
substituting each of the transpositions in with their
minimum cost transposition decomposition, we obtain

.
It is easy to see that

is an STD of with cost .
Hence, the inequality

holds. Furthermore, note that is an even cycle, and hence must
have an even number of transpositions in any of its decomposi-
tions. This shows that .

C. Metric-Path and Extended-Metric-Path Cost Functions

We show next that for two non-trivial families of cost func-
tions, one can improve upon the bounds of Theorem 16. For
metric-path cost functions, a minimum cost MLD is actually an
MCD, i.e., . For extended-metric-path costs, it
holds that .

Fig. 17. Example illustrating the proof of Lemma 19: (a) The cycle
� � �������. Edges of ���� are shown with dashed arcs. The edge ����,
shown with a thick solid line, belongs to � ���. The tree � �����	�� con-
sists of solid edges on the left-hand side of ���� and � ������ consists of
solid edges on the right-hand side of ����. As stated in the proof, we have
� ��� � ������ �������� �����	��. (b) The defining path 
 of �. Vertex
1 is a leaf and 3 is its parent. (a) ���� � � ��� (b) 
 .

Note that metric-path costs are not the only cost functions
which admit MCDs of the form of MLDs—another example in-
cludes star transposition costs. For such costs, one has

for all , except for one index . The remaining costs are
arbitrary, but non-negative. The proof for this special case is
straightforward and hence omitted.

Lemma 19: For a cycle and a metric-path cost function ,
.

Proof: The equality in the lemma follows from the defini-
tion of metric-path cost functions.

We recursively construct a spanning tree with cost
, such that is planar.

Since corresponds to an MLD, . The va-
lidity of the recursive construction can be proved by induction.

For , i.e., , is the edge with cost
. Assume next that the cost of for any

cycle of length equals .
For a cycle of length , without loss of generality, assume

that the vertex labeled 1 is a leaf in (the defining path of )
and that is its parent. We construct from smaller trees by
letting

See Fig. 17 for an illustration. The cost of is equal to
. Note that we can write

Since and
, it follows that

This completes the proof of the lemma.
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Theorem 20: For a cycle and a metric-path cost function,
one has

Proof: Since , it suffices to show that
and .

Lemma 19 establishes that . From
Lemma 17, it follows that

Since is a metric-path cost function, we have
. This proves the claimed result.

Theorem 21: For extended-metric-path cost functions ,
.

Proof: We prove the theorem by establishing that

where is the shortest path between and in
and is calculated with respect to the cost function .

Let be the defining path of an extended-metric-path cost
. Consider the metric-path cost function, , with defining

path , and with costs of all edges doubled. If the
edge , and if is the unique path from

to in , then

By Corollary 9, , for all , . Hence,
. Now, by Lemma 19,

(20)

which proves .
Note that Lemma 17 holds for all non-negative cost functions,

including extended-metric-path cost functions. Thus,

which proves .

Example 22: Consider the cycle and the ex-
tended-metric-path cost function with where the
cost of each edge of is 1.

By inspection, one can see that an MCD of is
, with cost . A minimum

cost MLD of is , with cost .
The decomposition , is an STD with
cost . Thus, we observe that the inequalities

and are satisfied.

In summary, we showed that the minimum cost MLD of a
cycle can be obtained in polynomial time. Furthermore, we
showed that the minimum cost MLD is a 4-approximation for
the MCD. For some special cases for the choice of the cost
function, the minimum cost MLD and the MCD coincide.

VI. OPTIMIZING PERMUTATIONS WITH MULTIPLE CYCLES

Most of the results in the previous section generalize to
permutations with multiple cycles without much difficulty. We
present next the generalization of those results.

Let be a permutation in , with cycle decomposition
. A decomposition of with minimum number of

transpositions is the product of MLDs of individual cycles .
Thus, the minimum cost of an MLD of equals

The STD of is the product of the STDs of individual cycles .
The following theorem generalizes the results presented for

individual cycles to permutations with multiple cycles.

Theorem 23: Consider a permutation with cycle decom-
position , and cost function . The following claims
hold.

1) .
2) .
3) .
4) If is a metric-path cost function, then

5) If is an extended-metric-path cost function, then

Proof:
1) For , it holds that

which can be seen by referring to (19) in the proof of The-
orem 16. Thus,

2) The same argument as in Lemma 17 applies without
modifications.

3) For , from the proof of Theorem 16, we have
. Consequently,
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Furthermore, from parts 1 and 2 of this theorem, it follows
that . Therefore .

4) From Lemma 19, for , it holds that

By summing over all cycles, we obtain

The claimed result follows from part 2 and the fact that
.

5) From the proof of Theorem 21, we have
. By summing over all cycles, we

obtain

where the last inequality follows from part 2 of this the-
orem.

A. Merging Cycles

In Section V, we demonstrated that the minimum cost of an
MLD for a cycle represents a constant approximation for an
MCD. The MLD of a permutation represents the product of
the MLDs of individual cycles of the permutation. Clearly, op-
timization of individual cycle costs may not lead to the min-
imum cost decomposition of a permutation. For example, it may
happen that the cost of transpositions within a cycle are much
higher than the costs of transpositions between elements in dif-
ferent cycles. It is therefore useful to analyze how merging of
cycles may affect the overall cost of a decomposition.

We propose a simple merging method that consists of two
steps:

1) For a permutation with cycles, find a sequence of trans-
positions

so that is a single cycle. Ideally, this sequence
should have minimum cost, although this is not required in
the proofs to follow.

2) Find the minimum cost MLD of .
The resulting decomposition of is .
Each is a transposition joining two cycles. The cost of

equals , where . The cost of the de-
composition equals

(21)

Since , we also have

(22)

Hence, from (21) and (22), is upper bounded by

(23)

where is the highest cost in . The approximation ratio,
defined as , is upper bounded by

(24)

which follows from the fact , where
is the smallest cost in , assumed to be nonzero.

Although is bounded by a value strictly larger than four, ac-
cording to the expression above, this does not necessarily imply
that merging cycles is sub-optimal compared to running the min-
imum cost MLD algorithm on individual cycles. Furthermore,
if the MCDs of single cycles can be computed correctly, one can
show that

The approximation ratio in this case is upper bounded by

Lemma 24: Let be a randomly chosen permutation from
. Given that the MCDs of single cycles can be computed cor-

rectly, and provided that , con-
verges to one in probability as .

Proof: Let be the random variable denoting the number
of cycles in a random permutation . It is well known
that and that

[30]. Here, denotes the th Har-
monic number. Thus,

(25)

which shows that in quadratic mean
as . Hence in probability.
By Slutsky’s theorem [31], in probability as .

In the following example, all operations are performed
modulo 10, with zero replaced by 10.
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Example 25: Consider the permutation , where
and , and the cost function

,

otherwise

where .
Note that

where is the shortest path from to . We make the following
observations regarding the decompositions of .

1) MCD: Since we currently do not know of an efficient
enough algorithm for finding the MCD of a permutation,
we were not able to find the MCD of . Nevertheless,
using Theorem 23, one can obtain the following bound:

2) MLD: As before, let the output of Alg. 1 be denoted by .
We have . The minimum cost MLDs
for the cycles are

each of cost 20. A minimum cost MLD of is the concate-
nation of the minimum cost MLDs of and :

with overall cost equal to 40.
3) STD: It can be shown that the STDs of and are

each with cost 28. The total cost of the STD is .
4) Merging cycles: Instead of finding the minimum cost

MLD of each cycle separately, we may join the cy-
cles and find the minimum cost MLD of a larger
cycle. Here, we find the minimum cost MLD of

. The minimum
cost of an MLD of can be shown to be 37. Since the
cost of the transposition must also be accounted
for, the total cost is 38. Observe that this cost is smaller
than the minimum MLD cost of part 2, and hence merging
cycles may provide better solutions than the ones indicated
by the bound (24) or as obtained through optimization of
individual cycles.

VII. CONCLUSIONS

We introduced the problem of minimum cost transposition
decomposition and presented an algorithm for computing a
transposition decomposition of an arbitrary permutation, with
cost at most four times the smallest possible cost. We also

Fig. 18. Minimum cost MLD (a), MCD (b), and STD (c), for � � �������.
Edge labels denote the order in which transpositions are applied. (a) Min cost
MLD (b) MCD (c) STD.

described an algorithm that finds the minimum cost of each
transposition in terms of a product of other transpositions,
as well as an algorithm that computes the minimum cost,
minimum length decomposition using dynamic programing
methods.

We also showed that more accurate solutions are possible
for two particular families of cost functions: for metric-path
costs, we derived optimal decomposition algorithms, while for
extended-metric-path costs, we described a 2-approximation
method.

The algorithms presented in this paper are of polynomial
complexity. Finding the minimum cost of a transposition has
complexity . Given the optimized cost transpositions,
the minimum length decomposition can also be constructed in

steps. Computing a decomposition whose cost does not
exceed the minimum cost by more than a factor of four requires

steps as well.

APPENDIX

We describe an algorithm for finding the path that solves

(26)

for , , where is the set of all paths between
and in . Recall from the discussion after Lemma 8 that
we can obtain an MCD of from this path. The algorithm
represents a variant of the Bellman-Ford procedure, described
in detail in [28].

Recall that for each path in , the stan-
dard cost of the path is

(27)

Define the transposition path cost

(28)

to be the cost of the graph consisting of two copies of minus
one copy of its most expensive edge. For , , ,
let the path that minimizes the transposition path cost, among
all paths from to , be denoted by . The goal is to find

, for all , , .
Before describing our algorithm, we briefly review the stan-

dard Single-Source Bellman-Ford shortest path algorithm, and
its relaxation technique.
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Given a fixed source , for each vertex , the algorithm
maintains an upper bound on the distance between and , de-
noted by .

“Relaxing” an edge means testing that the upper-bounds
and satisfy the conditions

(29)

where denotes the cost of the edge . If the above condi-
tions are not satisfied, then one of the two upper-bounds can be
improved, since one can reach by passing through , and vice
versa.

In our algorithm, we maintain the upper-bound for two types
of costs. The source is an arbitrary vertex in . For a path
between and a vertex , we use to denote the bound
on the minimum transposition path cost, and we use to
denote the bound on twice the minimum cost of the path. From
the definitions of these costs, the relaxation inequalities become

(30)

The relaxation algorithm for these inequalities, Alg. 3, is
straightforward to implement.

Algorithm 3 RELAX

1:

2: if then

3:

4:

5: if then

6:

7:

8: if then

9:

10:

11: if then

12:

13:

14: if then

15:

16:

17: if then

18:

19:

To describe the properties of the output of the Bellman-Ford
algorithm, we briefly comment on a simple property of the al-
gorithm, termed the path-relaxation property.

Suppose is the shortest path (in terms of
(27) and (28)) from to . After relaxing the
edges , in that given order, the
upper-bound (for , 2) equals the optimal cost of
the corresponding path. Note that the property still holds even if
the relaxations of the edges are
interleaved by relaxations of some other edges. In other words,
it suffices to identify only a subsequence of relaxations of the
edges .

In the algorithm below, we use to denote the prede-
cessor of node used for tracking the updates of the cost ,

, 2, and , , 2, to indicate from which of the two
costs, minimized over in (30), originated. Note that this notion
of predecessor is not to be confused with the predecessor of an
element in a permutation.

The modified Bellman-Ford algorithm, Alg. 4, performs
rounds of relaxation on the edges of the graph . Lemma 26
proves the correctness of the algorithm.

Algorithm 4 SINGLE-SOURCE BELLMAN-FORD

1: Input: vertex

2: Output: for

3: for do

4:

5:

6:

7:

8: for do

9: for each edge do

10: RELAX

11: for do

12: initialize path at

13: backtrack min cost alg to recover path to

14: output

An example of the steps of Alg. 4 is given in Fig. 19. As a
result of the relaxation of edges and , neighbors of
have finite costs, as shown in Fig. 19(a). Edge is relaxed
next, as seen in Fig. 19(b). Then, the relaxation of edge
reduces from 12 to 10. Continuing with the algorithm, we
obtain the final result in Fig. 19(f). Note that in this example, the
result obtained after the first pass is the final result. In general,
however, the final costs may be obtained only after all
passes are performed.

Lemma 26: Given , a cost function , and a source ,
after the execution of Alg. 4, one has and

.
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Fig. 19. Single-Pair Bellman-Ford algorithm on a 6-vertex graph. The costs �� ��� � � ����, are shown inside each vertex. Edges that are not drawn have
weight �.(a) Relaxation of ���� and ���� (b) Relaxation of ���� (c) Relaxation of ���� (d) Relaxation of ���� and ��	� (e) Relaxation of ���� and ��	� (f)
Relaxation of �	��.

Proof: Let be the path that mini-
mizes among all paths between and .
Since any path has at most vertices, we have . The
algorithm makes passes and in each pass relaxes all edges
of the graph. Thus, there exists a subsequence of relaxations that
relax , in that order. The proof
for the claim regarding follows by invoking the path-re-
laxation property and the fact that . The
proof for the claim regarding is similar.
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