
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016 811

The Capacity of String-Duplication Systems
Farzad Farnoud (Hassanzadeh), Moshe Schwartz, Senior Member, IEEE, and Jehoshua Bruck, Fellow, IEEE

Abstract— It is known that the majority of the human genome
consists of duplicated sequences. Furthermore, it is believed that
a significant part of the rest of the genome also originated
from duplicated sequences and has mutated to its current form.
In this paper, we investigate the possibility of constructing an
exponentially large number of sequences from a short initial
sequence using simple duplication rules, including those resem-
bling genomic-duplication processes. In other words, our goal
is to find the capacity, or the expressive power, of these string-
duplication systems. Our results include exact capacities, and
bounds on the capacities, of four fundamental string-duplication
systems. The study of these fundamental biologically inspired
systems is an important step toward modeling and analyzing
more complex biological processes.

Index Terms— Capacity, DNA, string duplication, formal
languages, constrained coding.

I. INTRODUCTION

MORE than 50% of the human genome consists of
repeated sequences [9]. An important class of these

repeated sequences are interspersed repeats, which are caused
by transposons. A transposon, or a “jumping gene”, is a
segment of DNA that can “copy and paste” or “cut and paste”
itself into new positions of the genome. Currently, 45% of
the human genome is known to consist of transposon-driven
repeats [9].

A second type of repeats are tandem repeats, generally
thought to be caused by slipped-strand mispairings [16].
A slipped-strand mispairing is said to occur when, during DNA
synthesis, one strand in a DNA duplex becomes misaligned
with the other. These mispairings may lead to deletions or
insertion of a repeated sequence [12]. While tandem repeats
are known to constitute only 3% of the human genome, they
cause important phenomena such as chromosome fragility,
expansion diseases, silencing genes [18], and rapid morpho-
logical variation [6].

While interspersed repeats and random repeats together
account for a significant part of the human genome, it is
conceivable that a substantial portion of the unique genome,
the part that is not known to contain repeated sequences, also

Manuscript received November 24, 2014; revised July 10, 2015; accepted
October 26, 2015. Date of publication December 4, 2015; date of current
version January 18, 2016. This work was supported by the National Science
Foundation within the Expeditions in Computing Program through the
Molecular Programming Project. This paper was presented in part at the 2014
IEEE International Symposium on Information Theory.

F. Farnoud and J. Bruck are with the Department of Electrical
Engineering, California Institute of Technology, Pasadena, CA 91125 USA
(e-mail: farnoud@caltech.edu; bruck@paradise.caltech.edu).

M. Schwartz is with the Department of Electrical and Computer
Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
(e-mail: schwartz@ee.bgu.ac.il).

Communicated by A. G. Dimakis, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2015.2505735

has its origins in ancient repeated sequences that are no longer
recognizable due to change over time [9], [18].

Other processes of DNA mutation include insertion and
deletion of subsequences, as well as point mutation which
replaces a single element in the DNA sequence with another.
These alone can mutate a DNA sequence, over time, and
potentially create any target sequence. This is in contrast with
duplication mutation processes which, at first glance, do not
appear to create new information. Can duplication processes
alone account for the diversity seen in nature?

Thus, motivated by the prevalence and the significance of
repeated sequences and the fact that much of our unique
DNA was likely originally repeated sequences, in this paper
we study the capacity of string-duplication systems with
simple duplication rules including those resembling the
repeat-producing genomic processes, namely duplication of
transposons and duplication caused by slipped-strand mispair-
ings. A string-duplication system, to be defined formally later,
consists of an initial sequence, a set of rewriting rules, and
all sequences that can be obtained by applying the rules to
the initial sequence a finite number of times. The notion of
capacity, defined later in the paper, represents the average
number of bits per symbol that can asymptotically be encoded
by the sequences in a string-duplication system, and thus
illustrates the expressive power and the diversity of that
system.

In this paper, we consider four duplication rules. The
first is the end-duplication rule, which allows substrings of
a certain length k to be appended to the end of existing
sequences. For example, if k = 3 we may construct the
sequence TCATGCCAT from TCATGC. While the biological
motivation for this rule is somewhat tenuous, and it may be
seen as an extension of a different rule studied below, we
present it first because of the simplicity of proving the related
results. In particular, we show that nearly all sequences with
the same alphabet as the initial sequence can be generated
with this rule.

The second rule is called tandem duplication and allows
a substring of length k to be duplicated next to its original
position. For example, for k = 3, from the sequence TCATGC,
one can generate TCATCATGC. We show that this rule has
capacity zero regardless of the initial sequence. However, if
one allows substrings of all lengths larger than a given value
to be copied, the capacity becomes positive except in trivial
cases.

The third rule is palindromic duplication, which is similar
to tandem duplication except that the copy is reversed before
insertion. For instance, in our previous example, the sequence
TCATTACGC can be generated. This rule is biologically
inspired, motivated by palindromic repeats in DNA which also

0018-9448 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

812 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

Fig. 1. A depiction of four duplication rules: (a) end duplication, (b) tandem duplication, (c) palindromic duplication, and (d) interspersed duplication.

involve complementing the base pairs (for example, see [13]).
To avoid imposing any structure on the underlying alphabet
and to allow odd-sized alphabets, in this study we use the
simpler model which only reverses the substring, but does not
complement it. We also note that reversing a substring without
complementing it was studied in the context of evolutionary
grammars, e.g., [2]. Here, in the palindromic duplication case,
the capacity is zero only in the trivial case in which the initial
sequence has only one unique symbol.

The last rule is interspersed duplication, where the copy of
a substring of a given length k can be inserted after k ′ symbols.
This rule is motivated by the fact that transposons may insert
themselves in places far from their original positions. As an
example, for k = 3 and k ′ = 1, from TCATGC, one can obtain
TCATGCATC. For this rule, we show that the capacity is zero
if and only if the initial sequence is periodic with period equal
to the greatest common divisor of k and k ′.

The four duplication rules are depicted in Figure 1. Our
results regarding the expressive power of string-duplication
systems suggest that duplication in genome may be a source
of genomic diversity.

We note that the biologically-inspired mathematical model
we suggest is not entirely new. Indeed, the special case of
tandem duplication has been already studied in a series of
papers [3], [4], [10], [11]. However, this was done in the
context of the theory of formal languages, and the goal of
these studies was mainly to determine their place in the
Chomsky hierarchy of formal languages. We also mention
the work [15], which aims to enumerate RNA folds that are
chemically stable by modeling them as words belonging to
context-free languages.

In the next section, we present the preliminaries and in the
following four sections, we present the results for each of the
aforementioned duplication rules. The concluding remarks are
presented in Section VII.

II. PRELIMINARIES

Let � be some finite alphabet. We recall some useful
notation commonly used in the theory of formal languages.
An n-string x = x1x2 · · · xn ∈ �n is a finite sequence of
alphabet symbols, xi ∈ �. We say n is the length of x and
denote it by |x | = n. For two strings, x ∈ �n and y ∈ �m ,
their concatenation is denoted by xy ∈ �n+m . The set of all
finite strings over the alphabet � is denoted by �∗. We say
v ∈ �∗ is a substring of x if x = uvw, where u, w ∈ �∗.
For s ∈ �∗ and a non-negative integer k, we use sk to
denote the sequence obtained by concatenating k copies of s.
A finite or infinite string s is periodic with period p if for all
1 � i � |s| − p, we have si = si+p .

The alpha-representation of a string s, denoted by R(s),
is the set of all letters from � making up s. Thus, if
s = s1s2 · · · sn ∈ �n ,

R(s) = {s1, s2, . . . , sn} ⊆ �.

The alpha-diversity of s is the size of the alpha-representation
of s, denoted by

δ(s) = |R(s)| .
Given a set S ⊆ �∗, we denote

S∗ = {w1w2 · · ·wm | wi ∈ S, m � 0},
whereas

S+ = {w1w2 · · ·wm | wi ∈ S, m � 1}.
For any x ∈ �∗, |x | = n � m, the m-suffix of x is w ∈ �m ,
such that x = vw for some v ∈ �∗. Similarly, the m-prefix
of x is u ∈ �m , where x = uv for some v ∈ �∗. Finally, we
conveniently denote [n] = {1, 2, . . . , n}.

A string system S is a subset S ⊆ �∗. For any integer n,
we denote by NS(n) the number of length-n strings in S, i.e.,

NS(n) = ∣
∣S ∩�n

∣
∣ .

FARNOUD et al.: CAPACITY OF STRING-DUPLICATION SYSTEMS 813

An important measure associated with a string system is
that of capacity. We use the definition given by Shannon in his
analysis of the discrete noiseless channel [17], which is also
commonly used in the constrained-coding theory [7], [14].

Definition 1: The capacity of a string system S ⊆ �∗ is
defined by

cap(S) = lim sup
n→∞

log2 NS(n)

n
.

Since NS(n) � |�|n we immediately note that

cap(S) � log2 |�|,
for all S. Also, for any infinite set S,

cap(S) � 0.

We pause to mention [1] which studied a context-free model
that included deletion, reversal, transposition, and tandem-
duplication operations. A similar question was asked in [1]:
what is the number of strings obtainable after a fixed number
of operations are applied to a given set of seed strings?
Inverse questions were also studied, i.e., given some numerical
parameters, can we construct a context-free model that has
these parameters? However, the results of [1] do not have any
bearing on the current paper.

To further study the capacity of string systems we
require some tools used in constrained-coding theory, mostly,
Perron-Frobenius theory. For an in-depth study the reader is
referred to [14] (in particular, Chapter 4). A way of generating
a set of strings is the following: Let G = (V, E,L) be a
finite directed graph, with vertices V , directed edges E , and a
labeling function L : E → � with � a finite alphabet. A path
in the graph is a sequence of edges e1, e2, . . . , e� such that for
each 1 � i � �− 1, the destination vertex of ei is the source
vertex of ei+1. We say the path generates the word w ∈ �∗
if w = L(e1)L(e2) . . .L(e�). The string system generated by
the graph S = S(G) is the set of all words generated by finite
paths in G.

Some other properties of the graph are of interest.
We say G is irreducible if for every (ordered) pair of
vertices v1, v2 ∈ V , there is a directed path from v1 to v2.
An irreducible graph is said to be primitive if the gcd of the
lengths of cycles in G is 1. In particular, a self-loop in an
irreducible G forces the graph to be primitive.

A graph G is said to be lossless if any two distinct paths
that agree on the starting vertex, and agree on the ending
vertex, must generate distinct words. In particular, if for every
vertex v ∈ V , the outgoing edges from v are labeled by
distinct elements of �, then the graph is deterministic and
also lossless.

The adjacency matrix of G, denoted AG , is the |V| × |V|
integer matrix, whose i, j entry is the number of edges directed
from vi to v j . By Perron-Frobenius theory [14, Th. 4.2.3]
the spectral radius of AG (the largest absolute value of
any eigenvalue of AG), which is denoted λ(AG), is also an
eigenvalue of AG . For an irreducible lossless G, we have
[14, Th. 4.4.4],

cap(S(G)) = log2 λ(AG).

If in addition G is primitive, then the number of paths (words)
of length n starting at vertex vi ∈ V and ending at vertex
v j ∈ V is given by [14, Th. 4.5.12]

(

ci, j + o(1)
)

λ(AG)n,

where ci, j is a positive constant, and o(1) denotes a function
tending to 0 as n grows.

We now turn to describe another property of string systems
we will be interested in.

Definition 2: Let S ⊆ �∗ be a string system. We shall say
S is fully diverse if for every v ∈ �∗ there exist u, w ∈ �∗
such that uvw ∈ S.

In other words, a string system S is fully diverse if every
finite sequence appears as a subsequence of a string in S.
We observe that a fully-diverse system S does not necessarily
have maximum capacity of log2 |�|. As an example, let
� = {0, 1}, and consider S = {vv | v ∈ �∗}. Obviously S is
fully diverse, but cap(S) = 1

2 .
In the other direction, however, if a string system S has

full capacity, i.e., cap(S) = log2 |�|, then it must be fully
diverse. For otherwise, there exists a finite-length sequence v
that never appears as a subsequence of a string in S. By the
theory of constrained systems (for example see [14]), S cannot
have full capacity.

A basic component in our setting is a string-duplication
rule. Such a rule, T , is nothing but a function T : �∗ → �∗.
In what follows, these rules will be defined as taking subse-
quences and duplicating them in various ways under certain
conditions, hence the name string-duplicating rules. We will
also use T (with appropriate subscripts and superscripts) to
denote sets of string-duplication rules, i.e., T ⊆ �∗�∗.

The following is the main definition used throughout the
paper, describing a string system that evolves from a seed
sequence using certain rules.

Definition 3: Let � be a finite alphabet, s ∈ �∗ some
string, and T ⊆ �∗�∗ a set of string-duplication rules.
A string-duplication system, S, defined by the tuple (�, s,T),
is the closure of T operating on s, namely, S ⊆ �∗ is the
minimal set for which:

1) s ∈ S.
2) s′ ∈ S and T ∈ T imply T (s′) ∈ S.

We write S = S(�, s,T).
We can think of s as a seed string, and the strings resulting

from applying the functions in T to s, as the descendants
of s. Thus, S contains s, its descendants, its descendants’
descendants, and so on.

We close this section with two simple lemmas.
Lemma 4: Let � be a finite alphabet, and s, s′ ∈ �∗.

Consider S = S(�, s,T) and S′ = S(�, s′,T) two string-
duplication systems. If s′ ∈ S, then

cap(S′) � cap(S).

Proof: Since s′ ∈ S it is trivial that S′ ⊆ S, and the claim
follows.

For the second lemma we need to define a certain kind of
duplication rules.

814 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

Definition 5: A set of duplication rules T is said to be
extension invariant if for all s, u, w ∈ �∗ and T ∈ T , if
T (s) = v, then there exists T ′ ∈ T such that T ′(usw) = uvw.

Lemma 6: Let � be a finite alphabet, and s ∈ �∗. Consider
S = S(�, s,T) a string-duplication system, where T is
extension invariant. Then for any u, w ∈ �∗ and S′ =
S(�, usw,T), we have

cap(S) � cap(S′).

Proof: Since T is extension invariant, we note that any
v ∈ S implies uvw ∈ S′. Thus,

NS(n) � NS ′(n + |uw|).
Since |uw| is a constant independent of n, plugging this
inequality in the definition of the capacity gives the desired
result.

We can tie all of these concepts together in the following
theorem.

Theorem 7: Let � be a finite alphabet, s ∈ �∗, and let
S = S(�, s,T) be a fully-diverse string-duplication system
with an extension invariant T . Then cap(S) does not depend
on s.

Proof: Denote Si = S(�, si ,T) for i = 1, 2. Since S2 is
fully diverse, there exist u, w ∈ �∗ such that us1w ∈ S2.
Thus, since T is extension invariant, by Lemma 6 and then
Lemma 4 we get

cap(S1) � cap(S(�, us1w,T)) � cap(S2).

Symmetrically, we can show that cap(S2) � cap(S1). Hence,
cap(S1) = cap(S2).

We note that throughout the paper, all the duplication
rules that are used preserve the alpha representation, i.e.,
R(T (w)) = R(w) for all rules T and strings w ∈ �∗. Thus,
the requirement of full diversity in Theorem 7, throughout
this work, implicitly requires R(s) = �. However, this is not
necessarily the case for general rules that do not preserve the
alpha representation of strings.

We also mention in passing that we can change some of
the requirements of Theorem 7 and still obtain the same claim.
This may be done be replacing full diversity with an analogous
full suffix diversity (i.e., every finite string is obtainable as
a suffix of some word in the system), and also replacing
extension invariance with left-extension invariance. However,
this will not be useful in this paper.

III. END DUPLICATION

The first string-duplication system we study is end duplica-
tion. We show in this Section that this system has full capacity,
as well as full diversity.

We define the end-duplication function, T end
i,k : �∗ → �∗,

as follows:

T end
i,k (x) =

{

uvwv if x = uvw, |u| = i , |v| = k

x otherwise.

Namely, T end
i,k operates on a string by taking a substring of

length k, starting from the (i + 1)-st position, and copying it
at the end of the string.

Example 8: Let s = TCATGC. Then

T end
1,3 (s) = TCATGCCAT,

by substituting u = T, v = CAT, and w = GC. However,

T end
4,3 (s) = TCATGC = s,

since no partition s = uvw exists with |u| = 4 and
|v| = 3. �

We also define two sets of these functions which will be
used later:

T end
k =

{

T end
i,k

∣
∣
∣ i � 0

}

,

T end
�k =

{

T end
i,k′

∣
∣
∣ i � 0, k ′ � k

}

.

In the case of end duplication we can find the exact capacity,
as shown by the following theorem.

Theorem 9: Let � be any finite alphabet, k � 1 any integer,
and s ∈ �∗, |s| � k. Then for Send

k = S(�, s,T end
k),

cap(Send
k) = log2 δ(s).

Proof: First we note that by requiring |s| � k we avoid
the degenerate case of Send

k containing only s. We further note
that, by the definition of the duplication functions,

R(x) = R(T end
i,k (x))

for all non-negative integers i and k, and thus, all the strings
in Send

k have the same alpha-representation. Thus, trivially,

cap(Send
k) � log2 δ(s).

We now turn to prove the inequality in the other direction.
We contend that given a string x ∈ �∗, |x | � k, and some
string w ∈ �k , R(w) ⊆ R(x), with at most 2k duplication
steps we can obtain from x a string y ∈ �∗ ending with w,
i.e., y = vw, for some v ∈ �∗.

As a first step, we duplicate the k-prefix of x , i.e., if x = uv,
for |u| = k and some v, then

x ′ = T end
0,k (x) = uvu.

By doing so we ensure that for any symbol a ∈ R(x) there
is a k-substring of x ′ starting with a, and a k-substring of x ′
ending with a.

Let us now denote the symbols of w as w = w1w2 · · ·wk ,
wi ∈ �. Assume that the k-substring of x ′ starting at
position i1 ends with w1. We form

x1 = T end
i1−1,k(x ′)

whose 1-suffix is just w1. Next, assume the k-substring of x ′
starting at position i2 starts with w2. Note that x ′ is a prefix
of x1. We form

x2 = T end|x1|−k+1,k

(

T end
i2−1,k(x1)

)

.

It easy to verify x2 has a 2-suffix of w1w2. Continuing in the
same way, let i j be the starting position of a k-substring of x ′
starting with w j . We form

x j = T end|x j−1|−k+1,k

(

T end
i j−1,k(x j−1)

)

,

for j = 3, . . . , k. Note that x j has a j -suffix w1, . . . , w j .

FARNOUD et al.: CAPACITY OF STRING-DUPLICATION SYSTEMS 815

It follows that after 2k duplication steps we can obtain
from any such x a string with any given k-suffix w, provided
R(w) ⊆ R(x). Thus, from the initial string s, we can obtain
a string s′ with all of the strings of R(s)k appearing as
k-substrings, using at most 2kδ(s)k duplication steps,1 i.e.,

∣
∣s′

∣
∣ � |s| + 2k2δ(s)k .

After having obtained s′, each duplication may duplicate
any of the k-strings in R(s)k in a single operation. Thus, for
all n = ∣

∣s′
∣
∣ + tk, t a non-negative integer, the number of

distinct strings in Send
k is bounded from below by

NSend
k

(n) � δ(s)n−|s ′|.
Since

∣
∣s′

∣
∣ is a constant, we have

cap(Send
k) � log2 δ(s).

The following is an obvious corollary of Theorem 9.
Theorem 10: Let � be any finite alphabet, k � 1 any

integer, and s ∈ �∗, |s| � k. Then for Send
�k = S(�, s,T end

�k),

cap(Send
�k) = cap(Send

k) = log2 δ(s).

Proof: Since for all n � k,

NSend
k

(n) � NSend
�k

(n) � δ(s)n,

the claim follows.
Since by Theorem 9 and Theorem 10, Send

k and Send
�k

have full capacity if R(s) = �, the following corollary is
immediate.

Corollary 11: Both Send
k and Send

�k are fully diverse,
provided the seed string, s, satisfies |s| � k, and R(s) = �.

IV. TANDEM DUPLICATION

We now turn to consider tandem duplication. In complete
contrast with the previous section, we show that fixed-length
tandem duplication has capacity 0 and is never fully diverse.
However, tandem duplication with only lower-bounded dupli-
cation length has positive capacity and is fully diverse.

We define the tandem-duplication rules, T tan
i,k : �∗ → �∗, as

T tan
i,k (x) =

{

uvvw if x = uvw, |u| = i , |v| = k

x otherwise.

We also define the sets

T tan
k = {

T tan
i,k

∣
∣ i � 0

}

,

T tan
�k =

{

T tan
i,k′

∣
∣
∣ i � 0, k ′ � k

}

.

In words, tandem duplication takes a k-substring and dupli-
cates it adjacent to itself in the string. The following theorem
shows that the capacity of tandem-duplication systems is in
complete contrast to end-duplication systems.

Theorem 12: Let � be any finite alphabet, k any positive
integer, and s ∈ �∗, with |s| � k. Then for
Stan

k = S(�, s,T tan
k),

cap(Stan
k) = 0.

1This bound may be improved, but this will not affect the capacity
calculation.

Proof: Consider any n-string x ∈ �n , n � k. Instead of
viewing x = x1x2 · · · xn as a sequence of n symbols from �,
we can, by abuse of notation, view it as a sequence of n−k+1
overlapping k-substrings x = x ′1x ′2 · · · x ′n−k+1, where

x ′i = xi xi+1 · · · xi+k−1.

For a k-string y = y1y2 · · · yk , yi ∈ �, its cyclic shift by
one position is denoted by

Ey = y2 y3 · · · yk y1.

A cyclic shift by j positions is denoted by

E j y = y j+1y j+2 · · · yk y1y2 · · · y j .

We say two k-strings, y, z ∈ �k , are cyclically equivalent if

y = E j z,

for some integer j . Clearly this is an equivalence relation.
Let φ(y) denote the equivalence class of y. If y and z are
cyclically equivalent, then φ(y) = φ(z).

We now define

�(x) = φ(x ′1)φ(x ′2) · · ·φ(x ′n−k+1),

i.e., �(x) is the image of the overlapping k-substrings of x
under φ. We also observe that knowing x ′1 and �(x) enables
a full reconstruction of x .

At this point we turn to consider the effect of the duplication
T tan

i,k on a string x ∈ �∗, |x | � k. When viewed as a sequence
of overlapping k-substrings, as defined above,

T tan
i,k (x) = x ′1 · · · x ′i−1

x ′i Ex ′i E2x ′i · · · Ek−1x ′i x ′i
x ′i+1 · · · x ′n−k+1.

Since φ(x ′i) = φ(E j (x ′i)) for all j , we have

�(T tan
i,k (x)) = φ(x ′1) · · ·φ(x ′i−1)

φ(x ′i)φ(x ′i) · · ·φ(x ′i)
φ(x ′i+1) · · ·φ(x ′n−k+1),

where φ(x ′i) appears k + 1 consecutive times.
Thus, we may think of φ(x ′i) as a bin, and the action of

T tan
i,k as throwing k balls into the bin φ(x ′i). The number of

bins does not change throughout the process, and is equal to
one more than the number of times φ(x ′i) 	= φ(x ′i+1), where
x = s is the original string. If b is the number of bins defined
by s, then the number of strings obtained by m duplications is
exactly

(b+m−1
b−1

)

. Since this number grows only polynomially
in the length of the resulting string, we have

cap(Stan
k) = 0.

We note that Stan
k is not necessarily fully diverse. For

example, take any k ∈ N, � = {0, 1, 2}, and s = 0k1k2k . It is
easily seen that in all the strings of Stan

k = S(�, s, T tan
k), all

the 0’s appear before all the 2’s. In fact, a stronger statement
is provided by the following theorem.

Theorem 13: Let � be a finite alphabet, |�| � 2, and
s ∈ �∗. Then Stan

k = S(�, s,T tan
k) is never fully diverse.

816 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

Proof: Like in the proof of Theorem 12, denote
s = s1s2 · · · sn , define s′i = si si+1 · · · si+k−1, and consider

�(s) = φ(s′1)φ(s′2) · · ·φ(s′n − k + 1).

If, for convenience, we denote all the possible equivalence
classes as φ1, φ2, . . . , φm , then we can write

�(s) = φ
j1
i1

φ
j2
i2
· · ·φ j�

i�
,

for some positive integers i1, . . . , i� and j1, . . . , j�, and where
it 	= it+1 for all t .

By the proof of Theorem 12, every sequence v ∈ Stan
k

satisfies

�(v) = φ
j1+t1k
i1

φ
j2+t2k
i2

· · ·φ j�+t�k
i�

, (1)

for some non-negative integers t1, . . . , t�. When |�| � 2 we
have m � 2, i.e., there is more than one equivalence class.
Thus, we contend that there is a sequence whose � transform
is not a subsequence of (1). If such a sequence exists, it does
not appear as a subsequence of a string in Stan

k .
We now prove the existence of such a sequence. Let

v ∈ Stan
k be a string in the system, and �(v) of the form

given in (1). Denote |v| = n, and v = v1v2 · · · vn , where
vi ∈ �. The k-suffix of v is vn−k+1vn−k+2 · · · vn . Arbitrar-
ily choose a letter vn+1 ∈ � such that vn−k+1 	= vn+1.
Obviously vn−k+1vn−k+2 · · · vn is not cyclically equivalent to
vn−k+2vn−k+3 · · · vnvn+1. Thus, let i�+1 be an index such that

φi� = φ(vn−k+1vn−k+2 · · · vn)

	= φ(vn−k+2vn−k+3 · · · vnvn+1) = φi�+1 .

It follows that

�(vvn+1) = φ
j1+t1k
i1

φ
j2+t2k
i2

· · ·φ j�+t�k
i�

φi�+1 .

Since i� 	= i�+1, we must have that �(vvn+1) is never a
subsequence of any sequence of equivalence classes of the
form (1).

Example 14: Set � = {0, 1}, and k = 2. Denote the
equivalence classes under cyclic rotation as

φ1 = φ(00),

φ2 = φ(01) = φ(10),

φ3 = φ(11).

Assume we pick s = 000110. Then

�(s) = φ(00)φ(00)φ(01)φ(11)φ(10) = φ2
1φ2φ3φ2.

By Theorem 13, all the strings v ∈ Stan
2 = S(�, s,T tan

2) have
the following � transform,

�(v) = φ
2+2t1
1 φ

1+2t2
2 φ

1+2t3
3 φ

1+2t4
2 . (2)

Take for example w = 11011. We have

�(w) = φ3φ
2
2φ3.

Since �(w) is never a subsequence of (2), w never appears
as a subsequence of a string in Stan

2 = S(�, s,T tan
2). �

When considering Stan
�k = S(�, s,T tan

�k) the situation
appears to be harder to analyze. We start with the case
of k = 1.

Fig. 2. The finite-state automaton accepting the regular language used in the
proof of Theorem 15.

Theorem 15: For any finite alphabet �, and any string
s ∈ �∗ of nontrivial alpha-diversity, δ(s) � 2, we have

cap(Stan
�1) � log2(r + 1),

where r is the largest (real) root of the polynomial

f (x) = xδ(s) −
δ(s)−2
∑

i=0

xi .

Proof: The proof strategy is the following: we shall show
that Stan

�1 contains, among other things, a regular language.

The capacity of that regular language will serve as the lower
bound we claim.

For the first phase of the proof, assume i1 < i2 < · · · < iδ(s)
are the indices of the δ(s) distinct alphabet symbols in s.
We produce a sequence of strings, s0, s1, . . . , sδ(s)−1, with
s0 = s, defined iteratively by

s j = T tan
iδ(s)− j−1,iδ(s)−iδ(s)− j+ j (s j−1),

for j = 1, 2, . . . , δ(s) − 1. After this set of steps, the
δ(s)-substring starting at position iδ(s) of sδ(s)−1 contains δ(s)
distinct symbols. In what follows we will only use these
symbols for duplication, and thus, the constant amount of
other symbols in sδ(s)−1 does not affect our calculation of the
lower bound on capacity. Thus, for ease of presentation we
shall assume from now on that s = aδ(s)aδ(s)−1 · · · a1, where
a j ∈ � are distinct.

We now perform the following iterations: In iteration i ,
where i = δ(s), δ(s)−1, . . . , 2, we duplicate only i -substrings
equal to aiai−1 · · · a2a1 (as many times as we want). As a final
iteration, we may duplicate 1-substrings without constraining
their content. It is easy to verify the resulting strings form the
following regular language,

S =
(

a+δ(s)

(

a+δ(s)−1

(

. . .
(

a+2
(

a+1
)+)+)+)+)+

.

The construction process implies S ⊆ Stan
�1.

The finite-state automaton accepting the regular language S
is depicted in Figure 2. The graph is primitive and lossless,
and thus, for the purpose of calculating the capacity, instead of
counting the number of length n words in S, we can count the
number of length-n paths in the depicted automaton graph G,

FARNOUD et al.: CAPACITY OF STRING-DUPLICATION SYSTEMS 817

starting and ending in the appropriate vertices (see [7], [14]).
By Perron-Frobenius theory,

cap(Stan
�1) � cap(S) = log2 λ(AG),

where λ(AG) is the largest magnitude of an eigenvalue of AG ,
and where AG denotes the adjacency matrix of G. We note
that AG is the δ(s)× δ(s) matrix

AG =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1
1 1

1 1
. . .

. . .

1 1
1 1 1 . . . 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and its largest eigenvalue is the largest real root of

det(λI − AG) = (λ− 1)δ(s) −
δ(s)−2
∑

i=0

(λ− 1)i .

Setting x = λ− 1 we obtain the desired result.
Remark 16: Before proceeding we pause to reflect on the

lower bound of Theorem 15. Let r be the largest root of f (x),
defined in Theorem 15, and δ = δ(s). We contend that

1+√5
√

1− 4/
(

5δ2
)

2 (1+ 1/δ)
� r � 1+√5

2
. (3)

This clearly holds if δ = 2, with equality on the left-hand side
of (3). Assume δ > 2. Note that

f (x) = xδ − xδ−1 − 1

x − 1
= x δ+1 − x δ − x δ−1 + 1

x − 1
.

So r is the same as the largest root of g (x) = x δ+1 − xδ −
xδ−1 + 1 = xδ−1

(

x2 − x − 1
) + 1 which is in turn less than

the largest root of g (x) − 1 = x δ−1
(

x2 − x − 1
)

. Hence

r � 1+√5
2 . For the derivative g′ of g, we have g′ (x) =

xδ−2
(

(δ + 1) x2 − δx − (δ − 1)
)

, which has three roots: one
positive, one negative, and one equal to zero. Since g (1) = 0
and g′ (1) < 0, the function g (x) has a zero after the largest
zero of g′ (x), completing the proof of (3).

Based on the lower bound given in (3) and the trivial

upper bound of log2 δ (s), for Stan
�1 = S

(

�, s, T tan
�1

)

, with
δ (s) = 2, 3, and 4, we respectively have

1 � cap(Stan
�1) � 1

1.12127 � cap(Stan
�1) � 1.58496

1.18382 � cap(Stan
�1) � 2.

While these bounds are good for small values of δ (s),
as δ (s) increases the lower bound becomes close to

log2

(

1+ 1+√5
2

)

= 1.38848 and the upper bound grows as

log2(δ(s)), and so the gap grows large.
At least in one case, the bound of Theorem 15 is attained

with equality, as is shown in the following corollary.

Corollary 17: For � = {0, 1}, and s ∈ �∗ with δ(s) = 2
we have

cap(Stan
�1) = 1.

Proof: By applying Theorem 15 we get

cap(Stan
�1) � 1.

We also have the trivial upper bound

cap(Stan
�1) � log2 |�| = 1,

which completes the proof.
For Stan

�k and general k, we claim a weaker result, that is

provided in the following theorem.
Theorem 18: For any finite alphabet �, and any binary

string s ∈ �∗, |s| � k, of nontrivial alpha-diversity, δ(s) � 2,
we have

cap(Stan
�k) � log2 r > 0,

where r is the largest root of the polynomial

f (x) = xk+1 − x − 1.

Proof: The proof strategy is, again, to find a regular
language that is a subset of Stan

�k and use its capacity as a lower
bound. We start with the following preparation, by performing
the following k duplications,

s′ = T tan
0,2k−1

(

. . .
(

T tan
0,k+1

(

T tan
0,k (s)

)))

.

If we denote s′ = s′1s′2 · · · , where s′i ∈ �, then it is easy to
verify that

s′k+1 = s′k+2 = · · · = s′2k = s′1.

Since δ(s′) = δ(s) � 2, this run of at least k consecutive
equal symbols, must end. Without loss of generality, assume
0, 1 ∈ �, and (possibly after an appropriate relabeling of
the symbol names) either 0k1 or 10k form a substring of s′.
We shall assume the former, and the proof for the latter is
similar. We ignore the rest of the symbols, as they will not
affect our calculations of the lower bound on capacity. Thus,
we may proceed as if the initial string s is 0k1.

We now generate more strings by duplicating only sub-
strings of the form 0k1 or 0k−11. The resulting set of strings
contains the regular language

S =
((

0k1
)+ (

0k−11
)+)+

.

We can follow the same steps as in the proof of Theorem 15
in order to find the capacity of S. It is given by the base-2
logarithm of the largest real solution for the equation

x−(k+1) + x−k = 1.

By rearranging, we get the claim. It is also easy to verify that
the claimed r satisfies r > 1, and so the capacity is strictly
positive.

Remark 19: Let r denote the largest root of f (x) from
Theorem 18. We contend that 21/(k+1) � r � 21/k as follows.
Since f (1) < 0, we find r > 1. We have rk+1 = r + 1 � 2
and so r � 21/(k+1). On the other hand rk − 1 = 1/r � 1

818 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

and so r � 21/k. Thus, under the conditions of Theorem 18,
a weaker lower bound is

cap(Stan
�k) � 1

k + 1
.

Unlike the case of Stan
k , the following shows Stan

�k is fully
diverse.

Theorem 20: Let � be a finite alphabet, and s ∈ �∗
a string such that R(s) = � and |s| � k. Then
Stan
�k = S(�, s,T tan

�k) is fully diverse.
Proof: The proof follows the same path as that of

Theorem 15. Let v ∈ �� be any string, v = v1v2 . . . v�, with
vi ∈ �. Denote s = s1s2 . . . sn , and let i1, i2, . . . , i� be indices
(not necessarily distinct) such that si j = v j . This is always
possible since R(s) = �, i.e., all the letters of the alphabet
appear somewhere in s.

As a first step we define w0 = T tan
0,|s|(s), i.e., create

w0 = ss from s. We then iteratively create w j from w j−1
in the following way:

w j = T tan
i j−1,2|s|−i j+ j (w j−1),

for j = 1, 2, . . . , �. We note that the first step of creating ss
from s, and the fact that |s| � k, guarantee that

2 |s| − i j + j � k,

for all j . Now, one can easily verify that w j , starting
from index 2 |s| + 1, contains v1v2 . . . v j . In particular,
w� contains v, and so Stan

�k is fully diverse.
Corollary 21: Let � be a finite alphabet, and s ∈ �∗ such

that R(s) = �, and |s| � k. Then cap(Stan
�k(s)) does not

depend on s.
Proof: This is a combination of Theorem 20, Theorem 7,

and the fact that T tan
�k is extension invariant.

In this section, we studied the capacity of systems Stan
�k .

The capacity and diversity of the analogous Stan
�k appears to be

quite more elaborate, and is studied in the recent [8]. Here, we
only mention a straightforward upper bound on this capacity.
Consider Stan

�k = S(�, s,T tan
�k) with � = {s1, . . . , sm} and

s = s1 · · · sm (the symbols of s are all distinct). Every sequence
y ∈ Stan

�k has the following two properties. First, for each i > k,
there are no occurrence of si−k that appears after si anywhere
in y. Second, the last occurrence of si for i < m is always
followed by si+1. Suppose y ∈ Stan

�k has length n. We can
divide y into m substrings where the i th substrings starts after
the previous one ends and ends at the last occurrence of si .
Note that the i th substring starts and ends with si and so
consists only of elements si , si+1, . . . , si+k−1. There are at
most

(n
m

)

ways of dividing y into such substrings. Hence, the
total number of possibilities for y is at most

(n
m

)

kn , and for
any finite alphabet � and any s as above,

cap(Stan
�k) � log2 k. (4)

V. PALINDROMIC DUPLICATION

The next type of string-duplication system we consider
uses palindromic duplication rules. Even with fixed-length
duplication we show this system has positive capacity and

full diversity. We also prove that the capacity of this system
depends only on the alpha-diversity of the seed string.

Consider the palindromic-duplication rule T pal
i,k : �∗ → �∗

defined as

T pal
i,k (x) =

{

uvv Rw if x = uvw, |u| = i , |v| = k,

x otherwise,

where y R is the reverse of y, i.e., y R = ym ym−1 · · · y1 for a
sequence y = y1 y2 · · · ym , y j ∈ �. Furthermore, let

T pal
k =

{

T pal
i,k

∣
∣
∣ i � 0

}

.

and use Spal
k = S(�, s,T pal

k). Since the seed string s will
play a crucial role, we shall often use the notation Spal

k (s) to
emphasize the choice of s.

Lemma 22: Let s ∈ �k such that s 	= s R. Then

cap(Spal
k (s)) � 1

k
.

Proof: By repeatedly applying duplication to the last block
of k symbols, we can create any sequence of alternating blocks
s and s R , starting with s. To extend any run of s, except the
first one, (resp. any run of s R) we can apply duplication to the
last block of the previous run, which is an s R block (resp. s).
Thus, the regular language

S = ss R
{

s, s R
}∗

,

satisfies S ⊆ Spal
k (s). Since s 	= s R , we easily see that

cap(Spal
k (s)) � cap(S) = 1

k
.

Note that the requirement that s 	= s R implies that k � 2.
The following theorem states that the capacity of palin-

dromic duplication is positive except in trivial cases.
Theorem 23: Let � be a finite alphabet. For any s ∈ �∗,
|s| � k, we have cap(Spal

k (s)) = 0 if and only if δ(s) = 1
or k = 1.

Proof: It is clear that if δ (s) = 1, then cap(Spal
k (s)) = 0.

Also, if k = 1 then trivially Spal
1 = Stan

1 , and then, by
Theorem 12, cap(Spal

1 (s)) = cap(Stan
1) = 0.

For the other direction, suppose that cap(Spal
k (s)) = 0.

If k = 1 then we are done. Assuming k > 1, we show that
δ(s) = 1. We first prove this for |s| = k.

Denote s = s1s2 · · · sk , with si ∈ �. Since
cap(Spal

k (s)) = 0, by Lemma 22, we must have that s = s R ,
or equivalently,

si = sk+1−i , ∀i ∈ [k]. (5)

If k = 2, then (5) implies δ(s) = 1 and we are done again.
We therefore assume k � 3. Obviously ss R ∈ Spal

k (s), so
by Lemma 4

cap(Spal
k (ss R)) � cap(Spal

k (s)) = 0.

Also, since s2s3 · · · sksk is a substring of ss R , and T pal
k is

obviously extension invariant, then by Lemma 6 we get

cap(Spal
k (s2s3 · · · sksk)) � cap(Spal

k (ss R)) � 0.

FARNOUD et al.: CAPACITY OF STRING-DUPLICATION SYSTEMS 819

Since Spal
k (s2s3 · · · sksk)) is an infinite set, we necessarily have

cap(Spal
k (s2s3 · · · sksk)) = 0.

Hence,

s2 = sk, (6)

si+2 = sk+1−i , ∀i ∈ [k − 2]. (7)

From (5) and (7), it follows that

si = si+2, ∀i ∈ [k − 2]. (8)

It is also true that s1 = s2 since s1 = sk from (5) and s2 = sk

from (6). The expressions (8) and s1 = s2 prove that δ(s) = 1.
We now consider the case of |s| � k. If s′ is a k-substring

of s, then by Lemma 6

cap(Spal
k (s′)) � cap(Spal

k (s)) = 0.

Since Spal
k (s′) is an infinite set, we have cap(Spal

k (s′)) = 0, and
using the above proof for length-k strings, we get δ(s′) = 1.
Since this is true for every k-substring s′ of s, either k = 1 or
the k-substrings overlap and we must have δ(s) = 1.

We now turn to consider the diversity of Spal
k (s).

Theorem 24: For any x, y ∈ �∗, with |y| � k, if R(x) ⊆
R(y), then there exists u ∈ �∗ such that ux ∈ Spal

k (y). In
particular, if R(y) = � then Spal

k (y) is fully diverse.
Proof: We prove the lemma by explicitly constructing

a string of the form ux that belongs to Spal
k (y). A simple

example of this process is given after the proof.
We first observe that we can always apply T pal

i,k to y for any
valid value of i , to obtain y for which |y| � 2k. For ease
of notation, we therefore assume |y| � 2k. We also assume
|x | > 0, or else the claim is trivial.

Suppose that the last symbol of x is a. We construct a
sequence y ′′ from y using the functions T pal

k such that a is
the last symbol of y ′′, i.e., a is “pushed” to the end. Let i be
such that yi = a. Consider the conditions

i � k and |y| − i � k − 1.

At most one of the two conditions does not hold. If the former
does not hold, let y ′ = T pal

0,k (y). There is a copy of a at position
i ′ = 2k − i + 1 in y ′, i.e., y ′i ′ = a. We have i ′ � k and
∣
∣y ′

∣
∣ − i ′ � 3k − (2k − i + 1) � k − 1. If the latter does not

hold, let y ′ = T pal
i−k,k (y) and i ′ = i . If both conditions hold,

let y ′ = y and i ′ = i . We thus have y ′i ′ = a with i ′ � k and
∣
∣y ′

∣
∣− i ′ � k − 1. The significance of these conditions is that

they enable us to duplicate blocks of length k containing a
without the need to concern ourselves with the boundaries of
the sequence.

Let
∣
∣y ′

∣
∣− i ′ = q(k − 1)+ r such that q and r are integers

with q � 1 and 0 � r < k − 1.
First, suppose k is even. We let y ′′ = T pal

i ′−k/2,k(y ′). Now
there is a copy of a in y ′′ at position i ′′ = i ′ + k + 1. The
distance of this copy from the end of y ′′ is

∣
∣y ′′

∣
∣− i ′′ = ∣

∣y ′
∣
∣+ k − (

i ′ + k + 1
) = ∣

∣y ′
∣
∣− i ′ − 1.

Hence, the distance is decreased by one, compared with y ′.
We repeat the same procedure and update y ′′ and i ′′ as

y ′′ ← T pal
i ′′−k/2,k

(

y ′′
)

,

i ′′ ← i ′′ + k + 1,

until we have
∣
∣y ′′

∣
∣ − i ′′ = q(k − 1), where for simplicity we

have used update rules instead of introducing new notation.
At this point we switch to repeating

y ′′ ← T pal
i ′′−1,k

(

y ′′
)

, (9)

i ′′ ← i ′′ + 2k − 1, (10)

until a becomes the last symbol of y ′′.
Next, suppose that k is odd and r is even. We let

y ′′ = T pal
i ′−(k−1)/2(y ′). Now there is a copy of a in y ′′ at position

i ′′ = i ′ + k + 2. The distance of this copy from the end of
y ′′ is

∣
∣y ′′

∣
∣− i ′′ = ∣

∣y ′
∣
∣+ k − (

i ′ + k + 2
) = ∣

∣y ′
∣
∣− i ′ − 2.

The distance is thus decreased by two, compared with y ′.
Since r is even, by repeating the same procedure and updating
y ′′ and i ′′, we can have

∣
∣y ′′

∣
∣− i ′′ = q (k − 1). We then repeat

(9) and (10) until a becomes the last symbol of y ′′.
Finally, suppose that k and r are both odd. Let y ′′ =

T pal
i−1,k(y ′). There is a copy of a in y ′′ at position i ′′ = i ′.

The distance of this copy from the end of y ′′ is
∣
∣y ′′

∣
∣ − i ′′ =

∣
∣y ′

∣
∣ + k − i . Let

∣
∣y ′′

∣
∣ − i ′′ = q ′ (k − 1)+ r ′ where q ′ and r ′

are integers with q ′ � 1 and 0 � r ′ < k − 1. We thus have

r ′ = r + 1+ (

q + 1− q ′
)

(k − 1).

Since k−1 is even and r is odd, we find that r ′ is even. We can
then proceed as in the previous case in which k is odd and
r is even.

We have shown that any symbol present in y can be
“pushed” to the end position. If we denote x = x1x2 · · · x�,
xi ∈ �, then we can push x� to the end position, disregard
it momentarily, and apply the procedure above to recursively
push x1x2 · · · x�−1 just before it. The final result is a sequence
in Spal

k (y) which ends with x .
Example 25: Consider the system Spal

k (y) over � =
{a, b, c, d} with y = abcbd, k = 3 and let x = ac. Our
goal is to find a word in Spal

k (y) that ends with x with the
method described in the proof of the preceding lemma. To do
this we first push c to the end in y. Note that for i = 3, we
have yi = c such that i � k and |y| − i � k − 1. Since
these conditions hold, let y ′ = y and i ′ = i . The value of
r in the equation

∣
∣y ′

∣
∣ − i ′ = q (k − 1) + r is thus r = 0.

Since r = 0, we let y ′′ = y ′ and i ′′ = i ′ = 3 and apply
(7) by letting y ′′ ← T pal

2,3

(

y ′′
)

to get y ′′ = abcbddbc. Now
that c is pushed to the end, we omit it, letting y = abcbddb,
and proceed by pushing a to the end. This process will follow
the steps: abcbddb → abccbabddb → abccbabddbadb→
abccbabddbadbbda, where we have underlined the segment
that is duplicated to get the next string. Putting these together,
we have obtained a word in Spal

k (y) that ends with x = ac,

820 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

TABLE I

NUMERICAL RESULTS FOR PALINDROMIC
DUPLICATION (SEE EXAMPLE 27)

as follows:

abcbd → abcbddbc→ abccbabddbc

→ abccbabddbadbc→ abccbabddbadbbdac,

where the symbols that are pushed to the end are in
boldface. �

Corollary 26: For all s ∈ �∗, with |s| � k and R(s) = �,
cap(Spal

k (s)) does not depend on s.
Proof: Again, this is a simple combination of Theorem 24,

Theorem 7, and the fact that T pal
k is extension invariant.

Suppose s is a string of length k such that s = s R . We show
that for positive integers p and q , we have

N
Spal

k (s)
(pqk) �

(

N
Spal

k (s)
(pk)

)q
. (11)

To see this, note that from s we can derive sq , i.e., q copies
of s. Then, from each of these copies, independently, we
generate a sequence from Spal

k (s) ∩ � pk . The the result is a
sequence of length pqk from Spal

k (s).
It is clear that (11) also holds for the case in which s is

equal to a (bijective) relabeling of s R , e.g., s = 012.
If we let q →∞ in (11), we find that

cap
(

Spal
k (s)

)

�
log2 N

Spal
k (s)

(pk)

pk
· (12)

We use this observation in the following example to obtain
numerical lower bounds on capacity.

Example 27: Using a computer, we obtain Table I for the
given values of s and k. In the table, N(n) denotes the number
of sequences of length n in the system Spal

k (s). We then use (12)
to find the following lower bounds on the capacity,

cap
(

Spal
2 (01)

)

� log2 584

14
� 0.65,

cap
(

Spal
3 (010)

)

� log2 2894

21
� 0.54,

cap
(

Spal
3 (012)

)

� log2 11577

21
� 0.64.

�

VI. INTERSPERSED DUPLICATION

As a final string system, we consider interspersed-
duplication. The picture is more complicated in this case.
We show that the capacity of the system is sometime 0, and
sometimes positive, depending on the periodicity of the seed
string. Unlike all previous systems, for this one we can also
show cases in which the capacity is positive, but less than full.

Finally, we also prove that the system is fully diverse in some
cases.

The interspersed-duplication rules T int
i,k,k′ : �∗ → �∗ are

defined as

T int
i,k,k′ (x) =

⎧

⎪⎨

⎪⎩

uvwvz, if x = uvwz, |u| = i ,

|v| = k, |w| = k ′,
x, otherwise.

We let

T int
k,k′ =

{

T int
i,k,k′

∣
∣
∣ i � 0

}

,

and use Sint
k,k′ = S(�, s,T int

k,k′), for some s ∈ �∗. We may

also use Sint
k,k′ (s) to denote the aforementioned string sys-

tem. To avoid trivialities, throughout this section, we assume
k, k ′ � 1.

For a sequence s = s1s2 · · · , with si ∈ �, we
conveniently denote the k-substring starting at position i as
si,k = si si+1 · · · si+k−1. Furthermore, for two sequences of
equal length, s, s′ ∈ �k , we denote their Hamming distance
as dH (s, s′), which is the number of coordinates in which s
and s′ disagree.

Lemma 28: For all s ∈ �∗ such that |s| � k + k ′, we have

cap(Sint
k,k′ (s)) � 1

k
log2

(

1+ dH

(

s1,k, (s
2)k+1,k

))

.

Proof: The proof considers two cases: either k > k′,
or k � k ′. We prove the former and state where the proof
of the latter is different. It also suffices to consider only
|s| = k + k ′, since for longer strings we can simply ignore
the extra symbols.

For simplicity of notation, let s = x1 · · · xk y1 · · · yk′ , where
xi , yi ∈ �. We initially apply T int

0,k,k′ to s and obtain

s′ = T int
0,k,k′ (s) = x1 · · · xk y1 · · · yk′x1 · · · xk .

We then apply T int
i,k,k′ to s′, for all 0 � i � k, and get the

following list of results:

x1 · · · xk y1 · · · yk′ x1 · · · xk x1x2x3 · · · xk′xk′+1xk′+2 · · · xk

x1 · · · xk y1 · · · yk′ x1 · · · xk y1x2x3 · · · xk′xk′+1xk′+2 · · · xk

x1 · · · xk y1 · · · yk′ x1 · · · xk y1 y2x3 · · · xk′xk′+1xk′+2 · · · xk

...

x1 · · · xk y1 · · · yk′ x1 · · · xk y1 y2y3 · · · yk′xk′+1xk′+2 · · · xk

x1 · · · xk y1 · · · yk′ x1 · · · xk y1 y2y3 · · · yk′ x1 xk′+2 · · · xk

...

x1 · · · xk y1 · · · yk′ x1 · · · xk y1 y2y3 · · · yk′ x1 x2 · · · xk−k′

where the 6 explicitly stated sequences correspond to
i = 0, 1, 2, k ′, k ′ + 1, k. From these results, it is clear that
we have 1+ dH (s1,k, (s2)k+1,k) distinct sequences. Since the
same operation can be repeated, i.e., apply T int

i,k,k′ to s′, for all
0 � i � k, to all the distinct results of the previous round, the
number of sequences in Sint

k,k′ with length 2k + k ′ + jk is at
least

NS int
k,k′

(2k + k ′ + jk) �
(

1+ dH (s1,k, (s
2)k+1,k)

) j
.

FARNOUD et al.: CAPACITY OF STRING-DUPLICATION SYSTEMS 821

This completes the proof for k > k ′.
For k � k ′ the proof is similar except that the result of

applying T int
i,k,k′ to s′, for all 0 � i � k, is the following set

of sequences:

x1 · · · xk y1 · · · yk′ x1 · · · xk x1x2x3 · · · xk

x1 · · · xk y1 · · · yk′ x1 · · · xk y1y2x3 · · · xk
...

x1 · · · xk y1 · · · yk′ x1 · · · xk y1y2 y3 · · · yk

where the 3 explicitly stated sequences correspond to
i = 0, 1, k.

With an example, we show that the lower bound of
Lemma 28 is sharp. Choose s as

s = a1 · · · akba2 · · · ak,

where b 	= a1. Suppose t ∈ Sint
k,k(s). Each k-substring

t(i−1)k+1,k , for non-negative integers i � |t|/k, either equals
a1 · · · ak or ba2 · · · ak . Thus for a non-negative integer j there
are no more than 2 j sequences of length jk in Sint

k,k(s). Hence,

cap(Sint
k,k(s)) � lim

j→∞
log2 2 j

j k
= 1

k

which matches the lower bound given in Lemma 28, and so
cap(Sint

k,k(s)) = 1
k .

The next corollary is an immediate result of the previous
lemma.

Corollary 29: Let � be some finite alphabet, and assume
cap(Sint

k,k′ (s)) = 0, where s ∈ �∗ and |s| � k + k ′. For any

(k + k ′)-substring of s, denoted t = x1 · · · xk y1 · · · yk′ , with
xi , yi ∈ �, we have dH (t1,k, (t2)k+1,k) = 0, i.e.,

x1 · · · xk = y1 · · · yk′x1 · · · xk−k′ , if k > k ′,
x1 · · · xk = y1 · · · yk, if k � k ′.

This corollary is used in the following theorem.
Theorem 30: For � a finite alphabet, s ∈ �∗, |s| � k+ k ′,

we have cap(Sint
k,k′ (s)) = 0 if and only if s is periodic with

period gcd(k, k ′).
Proof: We start with the easy direction. Assume s is

periodic with period gcd(k, k ′). Note that in this case Sint
k,k′ (s)

contains only one sequence of length ik + k ′ for each i � 1,
which is itself a periodic extension of s. No other sequence
appears in Sint

k,k′ (s). Thus, the capacity is 0.
We now turn to the other direction. Assume the capacity

is 0. We further assume

s = x1 · · · xk y1 · · · yk′ ,

with xi , yi ∈ �, has length k + k ′. The general case, of
|s| > k+k ′, will then follow easily. The proof in this direction
is divided into two cases.

For the first case, suppose k > k ′, and denote k ′′ = k − k ′.
We show that s is periodic with period gcd(k, k ′). From
Corollary 29, it follows that

y1 · · · yk′ = x1 · · · xk′

so we can write

s = x1 · · · xk x1 · · · xk′ .

Furthermore, said corollary implies that xi = xk′+i for
i ∈ [

k − k ′
]

and so

s = x1 · · · xk′x1 · · · xk′′x1 · · · xk′ .

By once applying the rule of T int
0,k,k′ we obtain

t = x1 · · · xk′ x1 · · · xk′′ x1 · · · xk′ x1 · · · xk′ x1 · · · xk′′ .

By Lemma 4, cap(Sint
k,k′ (s)) = 0 implies cap(Sint

k,k′ (t)) = 0.
Now let us apply Corollary 29 to the substring

t ′ = x1 · · · xk′′ x1 · · · xk′ x1 · · · xk′

of t to get

x1 · · · xk′′ x1 · · · xk′ = x1 · · · xk′x1 · · · xk′′ .

That is, the sequence x1 · · · xk′′x1 · · · xk′ , which has length k,
equals itself when cyclically shifted by k ′. Hence, it is periodic
with period gcd(k, k ′) and thus s is periodic with the same
period.

For the second case, assume k � k ′. Denote x = x1 · · · xk

and y = y1 · · · yk′ , so s = xy. Find integers q and r such that
k ′ = qk+ r and 0 � r < k and let t be the sequence obtained
from s by q + 1 times applying T int

0,k,k′ , that is,

t = xyxq+1

= x1,k y1,k yk+1,k · · · y(q−1)k+1,k yqk+1,r
(

x1,k
)q+1

.

Again, by Lemma 4 we have cap(Sint
k,k′ (t)) = 0. Thus, we

can apply Corollary 29 to any (k + k ′)-substring of t . For
i = 0, 1, . . . , q−1, in that order, applying Corollary 29 to the
(k + k ′)-substring tik+1,k+k′ implies that

x1,k = yik+1,k . (13)

Next, for the (k + k ′)-substring tqk+1,k+k′ , we have

tqk+1,k+k′ = y(q−1)k+1,k yqk+1,r
(

x1,k
)q

= x1,k yqk+1,r
(

x1,k
)q

,

where the second equality follows from (13). By applying
Corollary 29 to this sequence, we find

tqk+1,k+k′ = x1,kx1,r
(

x1,k
)q

.

Thus, we have

t = (x1,k)
q+1(x1,r)(x1,k)

q+1.

Finally, we apply Corollary 29 to the (k + k ′)-substring

tqk+r+1,k+k′ = xr+1 · · · xk x1 · · · xr (x1 · · · xk)
q x1 · · · xr

which shows that

xr+1 · · · xk x1 · · · xr = x1 · · · xk .

Since x1 · · · xk equals itself when cyclically shifted by r , it
is periodic with period gcd(k, r) = gcd(k, k ′). Hence t is
periodic with the same period and so is s.

We have shown that for the special case of |s| = k + k ′, if
the capacity is zero, then s is periodic with period gcd(k, k ′).
Now suppose |s| > k + k ′ and that cap(Sint

k,k′ (s)) = 0.

822 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

Let d = gcd(k, k ′) and, for the moment, also suppose that
d divides |s|. Let

C =
{

sid+1,k+k′

∣
∣
∣
∣

0 � i � |s| − (k + k ′)
d

}

be a set of (k + k ′)-substrings of s that cover s and each
consecutive pair overlap in at least d positions. Since the
capacity for each of these (k + k ′)-substrings is also zero,
they are periodic with period d . Because of their overlaps and
the fact that they cover s, it follows that s is also periodic
with period d . To complete the proof it remains to consider
the case in which d does not divide |s|. In this case, we
can repeat the same argument but with adding the substring
s|s|−(k+k′)+1,(k+k′) to the set C to ensure that s is covered by
overlapping (k + k ′)-substrings.

We now turn to discuss the dependence of cap(Sint
k,k′ (s))

on s. For a sequence x ∈ �∗, and two symbols a, b ∈ R(x),
let

�x (a, b) = {

j ∈ Z
∣
∣ ∃i, xi = a, xi+ j = b

}

,

be the set of the differences of positions of a and b in x .
Furthermore, let

ρx,� (a, b) = {(j mod �) | j ∈ �x (a, b)}.
Lemma 31: Let � be some finite alphabet, d > 0 an integer,

and D ⊂ {0, 1, . . . , d − 1} some subset, |D| < d. Consider
the constrained system S ⊆ �∗ such that for every x ∈ S,
and every two symbols a, b ∈ � (not necessarily distinct),
ρx,d(a, b) ⊆ D. Then cap(S) < log2 |�|.

Proof: We begin by constructing a De-Bruijn graph of
order d + 1 over �, G′′(V ′′, E ′′), defined in the following
way. We set V ′′ = �d+1, and a directed edge connects
v = v1 · · · vd+1 ∈ V ′′ and v ′ = v ′1 · · · v ′d+1 ∈ V ′′, if v ′i = vi+1
for all i ∈ [d]. That edge has label v ′d+1 ∈ �. The graph is
regular with out-degree |�|. Clearly the set of finite strings
read along paths taken in G′′ is simply S′′ = �∗. In particular,
by Perron-Frobenius theory, if AG ′′ is the adjacency matrix
of G′′, since G′′ is clearly deterministic (and therefore lossless)
and primitive,

cap(S′′) = log2 λ(AG ′′) = log2 |�| .
As the next step, we construct a graph G′(V ′, E ′) from

G′′(V ′′, E ′′) by setting V ′ = V ′′, and removing all edges
v → u, such that

ρv,d(a, b) ∪ ρu,d(a, b) 	⊆ D,

for some a, b ∈ �. The labels of the surviving edges remain
the same. We define S′ to be the set of strings read from finite
paths in G′. Since |D| < d , AG ′ is obtained from AG ′′ by
changing at least one entry from 1 to 0. By Perron-Frobenius
theory,

cap(S′) � log2 λ(AG ′) < log2 λ(AG ′′) = log2 |�| .
Finally, since it is clear that S ⊆ S′, we get

cap(S) � cap(S′) < log2 |�| ,
as claimed.

Using Lemma 31 we obtain the following theorem.

TABLE II

STRING-DUPLICATION SYSTEMS AND THEIR PROPERTIES

Theorem 32: Let � be a finite alphabet, s ∈ �∗ have
length at least k + k ′, and denote d = gcd(k, k ′). If, for some
a, b ∈ R(s), we have

∣
∣ρs,d(a, b)

∣
∣ < d then cap(Sint

k,k′ (s)) <
log2 δ(s).

Proof: We observe that for any x, x ′ ∈ Sint
k,k′ (s), and for

a, b ∈ R(s), we have

ρx,d (a, b) = ρx ′,d (a, b).

This can be easily seen by noting that any function in T int
k,k′

changes the differences between positions of two elements by
a linear combination (with integer coefficients) of k and k ′.
We then apply Lemma 31.

Theorem 33: For a finite alphabet �, s ∈ �∗, R(s) = �,
|s| � k + k ′, and gcd(k, k ′) = 1, the system Sint

k,k′ =
S(�, s,T int

k,k′) is fully diverse.
Proof: The proof is similar to that of Theorem 24. In

that light, it suffices to show that in a sequence y ∈ �∗ of
length m � k+ k ′, a symbol a ∈ R(y) can be “pushed” to the
end. That is, we can find a sequence y ′′ ∈ Sint

k,k′ (y) that ends
with a.

Suppose a is in position i in y. Without loss of gener-
ality (similar to Theorem 24), we may assume i > k and
m − i � k ′ − 1.

Let y ′ = T int
i−1,k,k′ (y). There is a copy of a at position i ′ = i

whose distance from the end of y ′ is
∣
∣y ′

∣
∣− i ′ = k+m− i and

this is an increase of size k compared to y. We update y ′ as
y ′ ← T int

i ′−1,k,k′ (y ′). In each step, the distance of a at position
i ′ from the end of y ′ increases by k. We continue until we
have k ′ | ∣∣y ′∣∣− i ′. This eventually happens as gcd(k, k ′) = 1.

Now we let y ′′ = T int
i ′−k,k,k′ (y ′). There is a copy of a in y ′′ at

position i ′′ = i ′ + k+ k ′. The distance of this copy of a from
the end of y ′′ is

∣
∣y ′′

∣
∣− i ′′ = ∣

∣y ′
∣
∣− i ′ − k ′. Thus the distance is

decreased by k ′. We update y ′′ and i ′′ as y ′′ ← T int
i ′′−k,k,k′ (y ′′)

and i ′′ ← i ′′ + k + k ′. We continue until a is the last element
of y ′′. The rest of the argument follows along the same lines
as those of Theorem 24.

Corollary 34: For a finite alphabet �, and s ∈ �∗ with
|s| � k + k ′ and R(s) = �, if gcd(k, k ′) = 1, then
cap(Sint

k,k′ (s)) does not depend on s.
Proof: Since T int

k,k′ is extension invariant, by Theorem 33
and Theorem 7 the result follows.

FARNOUD et al.: CAPACITY OF STRING-DUPLICATION SYSTEMS 823

VII. CONCLUSION

Motivated by the prevalence of repeats in biological
sequences and genomic-duplication processes, we studied the
capacity of several fundamental string-duplication systems.
Generally, the capacity of these systems is zero only under
very restrictive conditions and they can otherwise generate
an exponential number of strings. Furthermore, in many
cases, these systems can generate any string as a substring.
An overview highlighting the main results concerning non-
trivial systems is given in Table II. Specifically, we do not
consider systems with δ(s) = 1, and palindromic systems
with k = 1. Additionally, partial capacity denotes any capacity
falling within the open interval (0, log2 |�|). These results
suggest a complex behavior of such systems, as well as the
possibility of duplication in genome being a significant source
of genomic diversity.

Some open questions remain, the most notable of which
is to find non-trivial upper bounds on the capacities of these
systems. Another interesting question concerns the problem of
finding the exact capacity, either in a closed-form expression
or algorithmically.

Other open question involve extension of this model, in
order to match it with the complexity of the real world.
One such extension introduces probability into the model.
The capacity in that case becomes hard to compute, and
is upper bounded by the combinatorial capacity introduced
in this paper. Steps towards solving this problem are taken
in [5].

As a final note, we observe that there is a qualitative
difference between the proofs for full diversity of Send

k , Stan
�k ,

Spal
k , and Sint

k,k′ . Assume we have some s ∈ �∗, and we are
looking for u, w ∈ �∗ such that usw is in the string system.
In the case Send

k , the full-diversity proof constructs usw of
length |usw| =
(|s|). However, in the other cases, the proofs
only give |usw| =
(|s|2). We do not know whether this is
an inherent property of these strings systems, or whether it is
an artifact of our proof method. As a motivation to study this
we also observe that if there exists a constant c such that for
any s ∈ �∗ there exist u, w ∈ �∗ with usw ∈ S in the string
system and |usw| � c |s|, then

c|s|
∑

i=|s|
(i − |s| + 1)NS(i) � |�||s| .

This in turn implies that for some |s| � i � c |s|,
(c |s|)2 NS(i) � |�||s| ,

and therefore

cap(S) � 1

c
log2 |�| . (14)

ACKNOWLEDGEMENTS

The authors wish to thank the anonymous reviewers, whose
comments helped improve the presentation of this paper.
In particular, parts of the analysis in Remark 16 and Remark 19
were suggested by one of the anonymous reviewers, as
were (4) and (14).

REFERENCES

[1] J. Dassow, “Numerical parameters of evolutionary grammars,” in Jewels
Are Forever, J. Karhumäki, H. Maurer, G. Pǎun, and G. Rozenberg, Eds.
Berlin, Germany: Springer, 1999, pp. 171–181.

[2] J. Dassow and V. Mitrana, “Evolutionary grammars: A grammatical
model for genome evolution,” in Bioinformatics, vol. 1278. Berlin,
Germany: Springer, 1997, pp. 199–209.

[3] J. Dassow, V. Mitrana, and G. Pǎun, “On the regularity of duplication
closure,” Bull. EATCS, vol. 69, pp. 133–136, Oct. 1999.

[4] J. Dassow, V. Mitrana, and A. Salomaa, “Operations and language
generating devices suggested by the genome evolution,” Theoretical
Comput. Sci., vol. 270, nos. 1–2, pp. 701–738, 2002.

[5] F. Farnoud, M. Schwartz, and J. Bruck, “A stochastic model for genomic
interspersed duplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Hong Kong, Jun. 2015, pp. 904–908.

[6] J. W. Fondon, III, and H. R. Garner, “Molecular origins of rapid
and continuous morphological evolution,” Proc. Nat. Acad. Sci. USA,
vol. 101, no. 52, pp. 18058–18063, 2004.

[7] K. A. S. Immink, Codes for Mass Data Storage Systems.
Eindhoven, The Netherlands: Shannon Foundation Publishers, 2004.

[8] S. Jain, F. Farnoud, and J. Bruck, “Capacity and expressiveness of
genomic tandem duplication,” in Proc. IEEE Int. Symp. Inf. The-
ory (ISIT), Hong Kong, Jun. 2015, pp. 1946–1950.

[9] E. S. Lander et al., “Initial sequencing and analysis of the human
genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001.

[10] P. Leupold, C. Martín-Vide, and V. Mitrana, “Uniformly bounded
duplication languages,” Discrete Appl. Math., vol. 146, no. 3,
pp. 301–310, 2005.

[11] P. Leupold, V. Mitrana, and J. M. Sempere, “Formal languages arising
from gene repeated duplication,” in Aspects of Molecular Computing.
Berlin, Germany: Springer, 2004, pp. 297–308.

[12] G. Levinson and G. A. Gutman, “Slipped-strand mispairing: A major
mechanism for DNA sequence evolution,” Molecular Biol. Evol., vol. 4,
no. 3, pp. 203–221, 1987.

[13] D. M. Lilley, “The inverted repeat as a recognizable structural feature
in supercoiled DNA molecules,” Proc. Nat. Acad. Sci. USA, vol. 77,
no. 11, pp. 6468–6472, Nov. 1980.

[14] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and
Coding. Cambridge, U.K.: Cambridge Univ. Press, 1985.

[15] O. Milenkovic, “Constrained coding for context-free languages with
applications to genetic sequence modelling,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Nice, France, Jun. 2007, pp. 1686–1690.

[16] N. I. Mundy and A. J. Helbig, “Origin and evolution of tandem repeats
in the mitochondrial DNA control region of shrikes (Lanius spp.),”
J. Molecular Evol., vol. 59, no. 2, pp. 250–257, 2004.

[17] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423, Jul. 1948.

[18] K. Usdin, “The biological effects of simple tandem repeats: Lessons
from the repeat expansion diseases,” Genome Res., vol. 18, no. 7,
pp. 1011–1019, 2008.

Farzad Farnoud (Hassanzadeh) is a postdoctoral scholar at the California
Institute of Technology. He received his MS degree in Electrical and Computer
Engineering from the University of Toronto in 2008. From the University of
Illinois at Urbana- Champaign, he received his MS degree in mathematics
and his PhD in Electrical and Computer Engineering in 2012 and 2013,
respectively. His research interests include the information-theoretic and
algorithmic analysis of genomic evolutionary processes, ranking-based infor-
mation processing, and coding for flash memory. He is a recipient of the
Robert T. Chien Memorial Award for demonstrating excellence in research in
electrical engineering from the University of Illinois at Urbana-Champaign.

824 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

Moshe Schwartz (M’03–SM’10) is an associate professor at the Depart-
ment of Electrical and Computer Engineering, Ben-Gurion University of the
Negev, Israel. His research interests include algebraic coding, combinatorial
structures, and digital sequences.

Dr. Schwartz received the B.A. (summa cum laude), M.Sc., and Ph.D.
degrees from the Technion - Israel Institute of Technology, Haifa, Israel, in
1997, 1998, and 2004 respectively, all from the Computer Science Department.
He was a Fulbright post-doctoral researcher in the Department of Electrical
and Computer Engineering, University of California San Diego, and a
post-doctoral researcher in the Department of Electrical Engineering,
California Institute of Technology. While on sabbatical 2012-2014, he was
a visiting scientist at the Massachusetts Institute of Technology (MIT).

Dr. Schwartz received the 2009 IEEE Communications Society Best Paper
Award in Signal Processing and Coding for Data Storage, and the 2010 IEEE
Communications Society Best Student Paper Award in Signal Processing and
Coding for Data Storage.

Jehoshua Bruck (S’86–M’89–SM’93–F’01) is the Gordon and Betty Moore
Professor of computation and neural systems and electrical engineering at the
California Institute of Technology (Caltech). His current research interests
include information theory and systems and the theory of computation in
nature.

Dr. Bruck received the B.Sc. and M.Sc. degrees in electrical engineering
from the Technion-Israel Institute of Technology, in 1982 and 1985, respec-
tively, and the Ph.D. degree in electrical engineering from Stanford University,
in 1989. His industrial and entrepreneurial experiences include working with
IBM Research where he participated in the design and implementation of
the first IBM parallel computer; cofounding and serving as Chairman of
Rainfinity (acquired in 2005 by EMC), a spin-off company from Caltech
that created the first virtualization solution for Network Attached Storage; as
well as cofounding and serving as Chairman of XtremIO (acquired in 2012
by EMC), a start-up company that created the first scalable all-flash enterprise
storage system.

Dr. Bruck is a recipient of the Feynman Prize for Excellence in Teaching,
the Sloan Research Fellowship, the National Science Foundation Young
Investigator Award, the IBM Outstanding Innovation Award and the IBM
Outstanding Technical Achievement Award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

