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Abstract—We study the tandem duplication distance between
binary sequences and their roots. This distance is motivated by
genomic tandem duplication mutations and counts the smallest
number of tandem duplication events that are required to take
one sequence to another. We consider both exact and approximate
tandem duplications, the latter leading to a combined duplica-
tion/Hamming distance. The paper focuses on the maximum value
of the duplication distance to the root. For exact duplication,
denoting the maximum distance to the root of a sequence of
length n by f(n), we prove that f(n) = Θ(n). For the case
of approximate duplication, where a β-fraction of symbols may
be duplicated incorrectly, we show using the Plotkin bound that
the maximum distance has a sharp transition from linear to
logarithmic in n at β = 1/2.

I. INTRODUCTION

The genome of every organism is subject to mutations re-
sulting from imperfect genome replication, as well as environ-
mental factors. These mutations include tandem duplications,
which create tandem repeats by duplicating a substring and
inserting it adjacent to the original; point mutations, which
substitute a base in the sequence by another; and deletions, in
which a substring is removed from the sequence.

Gaining a better understanding of mutations that modify
genomes – thereby creating the variety needed for natural
selection – is helpful in many fields including phylogenomics,
systems biology, medicine, and bioinformatics. One aspect of
this task, namely studying the ability of duplication muta-
tions to generate diversity, has been recently studied from an
information-theoretic point of view [1], [2], [3]. In particular,
[1] models sequences generated from a starting “seed” through
different types of duplication as string systems and studies
their capacity and expressiveness. The notion of capacity quan-
tifies the ability of the systems to generate diverse families of
sequences, and expressiveness is concerned with determining
whether every sequence can be generated as a substring of
another sequence, if not independently. The results in [1], [2]
include lower bounds on the capacity of tandem duplications
and establishing that certain systems have nonzero capacity.

The aforementioned works focus on the possibility of gener-
ating sequences and do not consider the number of duplication
steps it takes to do so for any given sequence, which is the
subject of the current paper. Specifically, we define distance
measures between pairs of sequences based on the number
of exact or approximate tandem duplications that are needed
to transform one sequence to the other. We then study the

distances between sequences of length n ∈ N and their roots,
i.e., the shortest sequences from which they can be obtained
via these operations.

From an evolutionary point of view, the duplication dis-
tance between a sequence and its root is of interest since it
corresponds to a likely path through which a root may have
evolved into the sequence under study, especially in DNA
tandem repeat regions, which form about 3% of the human
genome [4], assuming that mutations are unlikely events. The
search for such a path has been studied in the literature, e.g.,
in [5], [6]. These works, however, have a more restrictive
duplication model than that of the present paper. Furthermore,
we are focused on the extremal distance values, while they
study the problem from an algorithmic point of view.

Formally, a (tandem) repeat of length h in a sequence is
two identical adjacent blocks, each consisting of h consecutive
elements. For example, the sequence 1213413451 contains
the repeat 134134 of length 3. A repeat of length h may be
created through a duplication of length h and removed through
a deduplication of length h, i.e., by removing one of the
two adjacent identical blocks. The duplication/deduplication
distance between two sequences x and y is the smallest
number of duplications and deduplications that can turn x
into y (to denote sequences we use bold symbols.). We set
the distance to infinity if the task is not possible, for example,
if x = 1 and y = 0.

For two sequences x and y , if y can be obtained from
x through duplications, we say that x is an ancestor of y
and that y is a descendant of x. An ancestor x of y is a
root of y if it is square-free, i.e., it does not contain a repeat.
We define the duplication distance between two sequences as
the minimum number of duplications required to convert the
shorter sequence to the longer one.1 This distance is finite if
and only if one sequence is the ancestor of the other.

This paper is focused on finding bounds on the duplication
distance of binary sequences to their roots. Our attention is
limited to binary sequences for the sake of simplicity, since
for the binary alphabet, the root of every sequence is unique
and belongs to the set {0, 1, 01, 10, 010, 101}. Specifically, the
roots of 0n and 1n are 0 and 1, respectively. For every other
binary sequence s of length n, the root of s is the sequence

1Note that using the term distance here is a slight abuse of notation as the
duplication distance does not satisfy the triangle inequality.
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Fig. 1. f(n) for 1 ≤ n ≤ 32 obtained by computer search.

in the set {01, 10, 010, 101} that starts and ends with the same
symbols as s. For example, the root of s = 1001011 is 101
since

s = 1001011
dd−→ 101011

dd−→ 10101
dd−→ 101,

where x
dd−→y indicates that y can be obtained from x

through a deduplication. More generally, through deduplica-
tion, we can convert every binary sequence to its root by
first converting every run of 1s or 0s to one symbol and then
converting a run of 10s to 10 or a run of 01s to 01.

We note that a celebrated result by Thue from 1906 [7]
states that for alphabets of size ≥ 3, there is an infinite square-
free sequence. Thus the set of roots for such alphabets is
infinite (in contrast to the binary alphabet).

For a binary sequence s, let f(s) denote the duplication
distance between s and its root and let f(n) be the maximum
of f(s) for all sequences s of length n. Figure 1, which
was obtained through computer search, shows the values of
f(n) for 1 ≤ n ≤ 32. In this paper, we provide bounds on
f(s) and on f(n). For example, we show that f(n) = Ω(n)
by encoding every sequences using its root and a specific
sequence of duplications that generate it when applied to
its root in order, such that the number of valid encodings
is 2O(f(n)). The desired result follows from the fact that
we must have 2O(f(n)) ≥ 2n. On the other hand, we show
constructively that limn f(n)/n ≤ 17/32.

We also consider a variation of the duplication distance,
referred to as the duplication/Hamming distance, where the
duplication process is imprecise and so the inserted block
is not necessarily an exact copy. More precisely, the β-
duplication/Hamming distance between two sequences x and
y is the smallest number of duplications that can turn the
shorter sequence into the longer one, where each duplication
may produce a block that differs from the original in at most
a β-fraction of positions. The shortest distance between s and
any of its roots is denoted by fβ(s) and the maximum of
fβ(s) over all sequences s of length n is denoted by fβ(n).

While it is clear that fβ(n) ≤ f(n), by extending our
encoding method used to obtain a lower bound on f(n),
we show that fβ(n) = Ω(n) for any constant β < 1/2.
Furthermore, we show that there is a sharp transition at

β = 1/2: For β > 1/2, we have fβ(n) = O(log n). The
proof of this statement relies on viewing certain substrings
of any sequence s as a code and then using the Plotkin
bound [8] to show that the minimum distance of this code is
sufficiently small to ensure the existence of adjacent blocks
whose Hamming distance is at most a β-fraction of their
length.

The rest of the paper is organized as follows. In the next
section, we consider the duplication distance and present
the bounds on f(n). Section III considers the duplica-
tion/Hamming distance. We conclude the paper in Section IV
with some open problems.

II. DUPLICATION DISTANCE

We start this section by providing straight-forward bounds
on f(s) for a sequence s. Suppose the root of s is σ ∈
{0, 1, 01, 10, 010, 101}. Clearly,

log
|s|
|σ |
≤ f(s) ≤ |s|,

where the log in the equation, as well as all others in the paper,
is in base 2, and |x| denotes the length of x. While the above
lower bound is tight, in the sense that there exist arbitrarily
long sequences s that satisfy it with equality, e.g., s = 02

k

and σ = 0, the upper bound is not tight as we will see.
We now provide a lower bound on f(s) that depends on

the number of distinct k-mers (substrings of length k) of s,
denoted K(s), for a positive integer value of k.

Lemma 1. For a sequence s and a positive integer k ≥ 4,

f(s) ≥ K(s)

k − 1
·

Proof. For two sequences x = tuuv and y = tuv , we have
K(y) ≥ K(x)−(k−1), since the only case in which a k-mer
occurs in x but not in y is when the only instance of that k-
mer intersects both copies of u in x. There are at most k− 1
k-substrings of x that intersect both copies of u. Finally, no
root contains a k-mer for k ≥ 4.

An immediate corollary of the lemma provides a construc-
tion for sequences whose duplication distance from the root is
f(s) = Ω(n/ log n). This is the largest distance for which we
have a construction, although we will later show that sequences
with f(s) = Ω(n) exist.

Corollary 2. For any binary De Bruijn sequence s of order
k (which has length n = 2k), we have

f(s) ≥ n− log n

log n
·

It is worth noting that using the same technique as the proof
of f(n) = Ω(n) in Theorem 3, and the fact that there are 2n/2

n
De Bruijn sequences of length n when n is a power of two,
one can show that the largest deduplication distance for these
sequences grows linearly in n.

Next we present one of the main results of the paper which
shows that f(n) = Θ(n) and that for almost all sequences s,
f(s) increases linearly with n.
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Theorem 3. The limit limn→∞ f(n)/n exists and

0.045 ≤ lim
n→∞

f(n)

n
≤ 17

32
·

Furthermore, for sufficiently large n, f(s) ≥ 0.045n for all
but an exponentially small fraction of sequences s of length n.

The lower bound in Theorem 3 is proved with the help of
Theorem 4, and its limit statement and the upper bound are
proved using Theorem 7.

Theorem 4. For 0 < α < 1, consider the set of the b2nαc
sequences of length n with the smallest duplication distance
to the root and let Fα be the maximum duplication distance
to the root for a sequence in this set. Then

6n

Fα∑
f=1

(
n+ f

f

)(
2n+ f

f

)(
2n+ f + 2

f

)
2f ≥ 2nα−1. (1)

Before stating the proof, we present some background,
definitions, and a claim that will be useful in the proof, as
well as a simpler but weaker result.

Recall that if the sequence s = s1s2 · · · sm contains a
repeat, then omitting one of the two blocks of this repeat
to obtain a new sequence is called a deduplication. We also
refer to the resulting sequence s′ as a deduplication of s, and
write s dd−→ s′. A deduplication process for a binary sequence
s is a sequence of sequences s = s0

dd−→ s1
dd−→ s2

dd−→ · · · dd−→
sf , where each si+1 is a deduplication of si and the final
sequence sf is the (square-free) root of s. The length of
the deduplication process above is f , that is, the number of
deduplications in it. A deduplication of s is an (i, h)-step if i
is the starting position of (the first block) of a repeat of length
h and one of the blocks of this repeat is omitted. For example,
if s = 12313413451, a (4, 3)-step produces s′ = 12313451.
A deduplication process of length f of a sequence s can
be described by a sequence of pairs (it, ht)

f
t=1, where step

number t is an (it, ht)-step. It is not difficult to check that
knowing the final sequence in the process, and knowing all
the pairs (it, ht) of deduplications in the process, in order, we
can reconstruct the original sequence s.

From the preceding discussion, each binary sequence s can
be encoded as the pair

(
σ , (it, ht)

f(s)
t=1

)
, where σ is the root

of s and (it, ht)
f(s)
t=1 a deduplication process of s. Since there

are only 6 possibilities for σ , and less than n2 possibilities
for each pair (it, ht), if F = f(n), then

6
F∑
f=1

(
n2
)f ≥ 2n, (2)

which implies that F = f(n) = Ω(n/ log n).
In the aforementioned encoding, several deduplication pro-

cesses may map to the same sequence. We improve upon (2)
by defining deduplication processes of a special form that re-
move some of the redundancy, and by doing so, we obtain (1),
which will lead to the linear lower bound of Theorem 3.

Definition 5. A deduplication process s = s0
dd−→ s1

dd−→
s2

dd−→ · · · dd−→ sf of a sequence s, in which the steps are
(i1, h1), (i2, h2), . . . , (if , hf ), is normal if the following con-
dition holds: For any 1 ≤ t < f , if it+1 < it then
it+1 + 2ht+1 ≥ it.

The following claim shows that if we limit ourselves to
normal deduplication processes, we can still encode every
binary sequence with processes of the same length.

Claim 6. For any deduplication process s = s0
dd−→ s1

dd−→
s2

dd−→ · · · dd−→ sf of length f of a sequence s, there is a nor-
mal deduplication process s = s0

dd−→ s′1
dd−→ s′2

dd−→ · · · dd−→
s′f = sf of the same length, with the same final sequence.

Proof. Among all deduplication processes of length f starting
with s and ending with sf , consider the one minimizing the
number of pairs (it, ht), (iq, hq) with 1 ≤ t < q ≤ f , and iq <
it. We claim that this process is normal. Indeed, otherwise
there is some t, 1 ≤ t < f so that it+1 < it and it+1 +
2ht+1 < it. But in this case we can switch the steps (it, ht)
and (it+1, ht+1), performing the step (it+1, ht+1) just before
(it, ht). This will clearly leave all sequences s0, s1, . . . , sf ,
besides st, the same, and in particular s0 = s and sf stay
the same. This contradicts the minimality in the choice of the
process, establishing the claim.

We now turn to the proof of Theorem 4.

Proof of Theorem 4. Let Uα denote the set of b2nαc se-
quences that have the smallest duplication distances to their
roots among binary sequences of length n and recall that
Fα = max{f(s) : s ∈ Uα}. By Claim 6, for each of the
sequences s of Uα, there is a normal deduplication process
s = s0

dd−→ s1
dd−→ s2

dd−→ · · · dd−→ sf of length f ≤ Fα. Let
the steps of this process be (i1, h1), (i2, h2), . . . , (if , hf ). As
before, it is clear that knowing the final sequence sf and all the
pairs (it, ht), we can reconstruct s. There are 6 possibilities
for sf . As each step (it, ht) reduces the length of the sequence
by ht it follows that

∑f
i=1 ht < n and therefore there are at

most
(
n+f
f

)
possibilities for the sequence (h1, h2, h3, . . . , hf ).

In order to record the sequence (i1, i2, . . . , if ) it suffices to
record i1 and all the differences it − it+1 for all 1 ≤ t < n.
There are less than n possibilities for i1, and there are at
most 2f possibilities for deciding about the set of all indices
t for which the difference it− it+1 is positive. As the process
is normal, for each such positive difference, we know that
it+1 + 2ht+1 ≥ it, that is it − it+1 ≤ 2ht+1. It follows that
the sum of all positive differences,

∑
t:it−it+1>0(it − it+1), is

at most 2
∑
t ht < 2n, and hence the number of choices for

these differences is at most
(
2n+f
f

)
.

Since if ≤ 3, we have i1 − if ≥ 1− 3 = −2. So∑
t:it−it+1≤0

(it − it+1) ≥ −2−
∑

t:it−it+1>0

(it − it+1) > −2− 2n.

Therefore, the number of choices for all non-positive dif-
ferences it − it+1 is at most

(
2n+f+2

f

)
. Putting all of these
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together, and noting that |Uα| ≥ 2nα−1, implies the assertion
of Theorem 4.

Since
(
p
q

)
≤ 2pH(q/p) for positive integers 0 < q < p [8,

p. 309], Theorem 4 implies that

3

(
2 +

Fα
n

)
H

(
Fα/n

2 + Fα/n

)
+
Fα
n
≥ α+ o(1),

where H is the binary entropy function. The expression on the
left side of the inequality is strictly increasing in Fα

n , and it is
less than 0.99 if we substitute Fα

n by 0.045. If we let α = 0.99,
it follows that for sufficiently large n, we have Fα

n ≥ 0.045,
thereby establishing the lower bound in Theorem 3.

To prove the upper bound in Theorem 3, we prove the
following theorem.

Theorem 7. The limit limn→∞ f(n)/n exists and is ≤ 17/32.

Proof. Note that for any positive integers n and m, f(n +
m) ≤ f(n)+f(m)+2. Indeed, we can deduplicate separately
the first n bits of the sequence and the last m bits, getting a
concatenation of two square-free sequences (of total length at
most 6). It then suffices to check that each such concatenation
can be deduplicated to its root through at most 2 additional
deduplication steps. Therefore, the function g(n) = f(n) + 2
is subadditive:

g(n+m) = f(n+m) + 2 ≤ f(n) + f(m) + 4

= g(n) + g(m).

By Fekete’s Lemma [9], g(n)/n tends to a limit (which is the
infimum over n of g(n)/n), and it is clear that the limit of
f(n)/n is the same as that of g(n)/n.

This proof of the existence of limn→∞ f(n)/n provides
a simple way to derive an upper bound for the limit by
computing f(n) precisely for some small n. In particular,
from Figure 1, we find limn→∞ f(n)/n ≤ (f(32) + 2)/32 =
17/32.

III. DUPLICATION/HAMMING DISTANCE

In this section, we provide bounds on fβ(n) for β < 1/2
and β > 1/2. We first however present some useful definitions.
For 0 ≤ β < 1, a β-repeat of length h in a binary sequence
consists of two consecutive blocks in the sequence, each of
length h, such that the Hamming distance between them is at
most βh. If uvv′w is a binary sequence, and vv′ is a β-
repeat, then a β-deduplication produces uvw or uv′w . Note
that in this case the set of roots of s is not necessarily unique,
but the length of any root is at most 3, even if β = 0. The next
theorem establishes a sharp phase transition in the behavior
of fβ(n) at β = 1/2. Its proof relies on Theorem 9, which
guarantees the existence of β-repeats under certain conditions.
In what follows, for an integer m, we use [m] to denote
{1, . . . ,m}.

Theorem 8. If β < 1/2, there exists a constant c = c(β) > 0
such that fβ(n) ≥ cn. Furthermore, if β > 1/2, for any con-

stant C >
⌈
2β+1
2β−1

⌉2
and sufficiently large n, fβ(n) ≤ C lnn.

Proof. The proof for β < 1/2 is similar to the proof of the
lower bound in Theorem 3. In this case however, to make the
deduplication process reversible, for every deduplication we
need to record whether it is of the form uvv′w

dd−→uvw
or of the form uv′vw

dd−→uvw , and we must also encode
the sequence v′. In the tth deduplication step, we have |v | =
|v′| = ht. Since v′ is in the Hamming sphere of radius βht
around v , there are at most 2htH(β) options for v′ . Thus

6n

Fβ∑
f=1

(
n+ f

f

)(
2n+ f

f

)(
2n+ f + 2

f

)
2nH(β)22f ≥ 2n,

where Fβ = fβ(n) and we have used
∑
t ht ≤ n. The desired

result then follows since H(β) < 1.

Suppose β > 1/2. Let K =
⌈
2β+1
2β−1

⌉2
and ε = C−K. Note

that ε > 0. By appropriately choosing C1, we can have fβ(i) ≤(
K + ε

2

)
ln i+C1 for all i < M , where M is sufficiently large

and in particular M > K. Assuming that this holds also for
all i < n, where n ≥ M , we show that it holds for i = n.
From Theorem 9, every binary sequence s of length n has a
β-repeat of length `bn/Kc for some ` ∈

[√
K
]
, implying

fβ(s) ≤ fβ
(
n− `

⌊ n
K

⌋)
+ 1

≤
(
K +

ε

2

)
ln
(
n−

⌊ n
K

⌋)
+ 1 + C1

≤
(
K +

ε

2

)
lnn−

(
K + ε

2

)
(n−K)

Kn
+ 1 + C1

≤
(
K +

ε

2

)
lnn+ C1 ≤ C lnn,

where the last two steps hold for sufficiently large n. Hence,
fβ(n) ≤ C lnn.

Theorem 9. If β > 1
2 , then for any integer k ≥ 2β+1

2β−1 , any
binary sequence of length n contains a β-repeat of length
`bn/k2c for some ` ∈ [k].

Proof. Let k be a positive integer to be determined later and
put K = k2. Furthermore, let s′ = s1 · · · sK be a partition of
the first KB symbols of s into blocks of length B =

⌊
n
K

⌋
.

We now consider as a code the k + 1 binary vectors

ti = si · · · si+K−k−1, (1 ≤ i ≤ k + 1),

each of length m = (K − k)B. By Plotkin’s bound [8,
p. 41], the minimum Hamming distance of this code is at
most

(
1
2 + 1

2k

)
m. Thus there exist ti and tj with i < j with

Hamming distance at most
(
1
2 + 1

2k

)
m.

Put h = (j − i)B and let m′ = hbm/hc be the largest
integer which is at most m and is divisible by h. Let t′i and
t′j consist of the first m′ bits of ti and tj , respectively. The
Hamming distance between t′i and t′j is clearly still at most(
1
2 + 1

2k

)
m. But

(
1
2 + 1

2k

)
m ≤

(
1
2 + 1

k−1

)
m′ since(

1

2
+

1

2k

)
m =

(
1

2
+

1

2k

)
m

m′
m′

≤
(

1

2
+

1

2k

)
k

k − 1
m′ =

(
1

2
+

1

k − 1

)
m′,
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where we have used the facts that m = k(k − 1)B and

m−m′

B
<
h

B
≤ k,

which since B divides m,m′, implies m−m′
B ≤ k − 1 and, in

turn, m′ ≥ m− (k − 1)B = (k − 1)
2
B.

Split t′i and t′j into blocks of length h each: t′i =
z1z2 · · · zp, t′j = z2z3 · · · zpzp+1, where p = m′/h. The
Hamming distance between t′i and t′j is the sum of the Ham-
ming distances between zq and zq+1 as q ranges from 1 to p.
Thus, by averaging, there exists an index r so that the Ham-
ming distance between zr and zr+1 is at most

(
1
2 + 1

k−1

)
h.

Putting k ≥ 2β+1
2β−1 so that 1

2 + 1
k−1 ≤ β ensures that zrzr+1

is β-repeat of length h = (j − i)B = (j − i)bn/Kc.

Let a βh-repeat be a repeat of length h with at most hβh
mismatches, i.e., the two blocks are at Hamming distance
at most hβh. In the preceding theorems and their proofs, in
principal, we do not need the maximum number of permitted
mismatches to be a linear function of the length of the repeat,
so we can apply the same techniques to βh-repeats with
nonlinear relationships:

Theorem 10. Let βah = 1
2 + 1

ha , where 0 < a < 1 is a
constant, and let fa(n) be the smallest number f such that any
binary sequence of length n can be deduplicated in f steps by
deduplicating βah-repeats. There exist positive constants c2, c3
such that

fa(n) ≤ c2n2a/(1+a) + c3. (3)

Proof. By making appropriate changes to the proof of Theo-
rem 9, one can show that for k =

⌈
2na/(1+a)

⌉
, every binary

sequence of sufficiently long length n contains a βah-repeat of
length h = `bn/k2c, for some ` ∈ [k]. To do so, we need to
prove

(
1
2 + 1

k−1

)
h ≤ βahh for all h of the form h = `bn/k2c,

` ∈ [k]. This holds since with the aforementioned value of k,

βa`bn/k2c =
1

2
+

1

(`bn/k2c)a
≥ 1

2
+

1

(kbn/k2c)a
≥ 1

2
+

1

k − 1
,

for all ` ∈ [k] and sufficiently large n.
We can now prove (3) by induction. Clearly, for any M ,

there exist constants c2, c3 such that fa(i) ≤ c2i2a/(1+a) + c3
for all i ≤M . Choose M to be sufficiently large as to satisfy
the requirements of the rest of the proof. Fix n > M and
assume that fa(i) ≤ c2i

2a/(1+a) + c3 for all i < n. Since
in every sequence of length n, there exists a βah-repeat with
h = `bn/k2c, for some ` ∈ [k] and k =

⌈
2na/(1+a)

⌉
, it holds

that

fa(n) ≤ 1 + c2
(
n− `bn/k2c

)2a/(1+a)
+ c3

≤ 1 + c2

(
n− 1

5
n

1−a
1+a

)2a/(1+a)

+ c3

= 1 + c2n
2a/(1+a)

(
1− 1

5
n−

2a
1+a

)2a/(1+a)

+ c3

≤ 1 + c2n
2a/(1+a)

(
1− 2a

5(1 + a)
n−

2a
1+a

)
+ c3

= c2n
2a/(1+a) +

(
1− 2ac2

5(1 + a)

)
+ c3,

where the inequalities hold for sufficiently large n. Noting
that we can choose c2 to be arbitrarily large completes the
proof.

IV. OPEN PROBLEMS

We now describe some of the open problems related to
extremal values of duplication distance. First, while we have
presented bounds on limn

f(n)
n , its value is unknown. Further-

more, although the lower bound f(s) ≥ 0.045n is valid for all
but an exponentially small fraction of sequences of length n,
we have not been able to find an explicit set of arbitrarily long
sequences whose distance to the root is linear in n. A related
problem to identifying sequences with large deduplication
distance is improving bounds on f(s) that depend on the
structure of s, such as the bound given in Lemma 1, relating
f(s) to the number of distinct k-mers of s.

While we showed at β = 1/2, fβ(n) transitions from a
linear dependence on n to a logarithmic one, the behavior at
β = 1/2 is not known. Furthermore, we can alter the setting
by decoupling mismatches and repeats, i.e., one sequence is
taken to another through substitutions and exact duplications,
with limitations on the number of substitutions. We can then
study the same problems as the ones in this paper as well
as new problems, e.g., the minimum number symbol changes
required to generate a sequence with a logarithmic number of
duplications.
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