
Duplication-Correcting Codes for Data Storage

in the DNA of Living Organisms

Siddharth Jain∗, Farzad Farnoud (Hassanzadeh)∗, Moshe Schwartz†, and Jehoshua Bruck∗

∗Electrical Engineering, California Institute of Technology

Pasadena, CA 91125, U.S.A., {sidjain, farnoud, bruck}@caltech.edu
†Electrical and Computer Engineering, Ben-Gurion University of the Negev

Beer Sheva 8410501, Israel, schwartz@ee.bgu.ac.il

Abstract—The ability to store data in the DNA of a living
organism has applications in a variety of areas including synthetic
biology and watermarking of patented genetically-modified or-
ganisms. Data stored in this medium is subject to errors arising
from various mutations, such as point mutations, indels, and
tandem duplication, which need to be corrected to maintain data
integrity. In this paper, we provide error-correcting codes for
errors caused by tandem duplications, which create a copy of a
block of the sequence and insert it in a tandem manner, i.e., next
to the original. In particular, we present a family of codes for
correcting errors due to tandem-duplications of a fixed length
and any number of errors. We also study codes for correcting
tandem duplications of length up to a given constant k, where
we are primarily focused on the cases of k = 2, 3.

I. INTRODUCTION

Data storage in the DNA of living organisms (henceforth

live DNA) has a multitude of applications. For example, it

can enable in vivo synthetic biology methods and algorithms

that need “memory,” e.g., to store information about their

state or record changes in the environment. Embedding data

in live DNA also allows watermarking genetically modified

organisms (GMOs) to verify authenticity and to track unautho-

rized use [1], [8], as well as, labeling organisms in biological

studies [15]. DNA watermarking can also be used to tag

infectious agents used in research laboratories to identify

sources of potential malicious use or accidental release [12].

Furthermore, live DNA can serve as a protected medium for

storing large amounts of data in a compact format for long

periods of time [2], [15]. An additional advantage of using

DNA as a medium is that data can be disguised as part of the

organisms original DNA, thus providing a layer of secrecy [3].

While the host organism provides a level of protection

to the data-carrying DNA molecules as well as a method

for replication, the integrity of the stored information suffers

from mutations such as tandem duplications, point mutations,

insertions, and deletions. Furthermore, since each DNA repli-

cation may introduce new mutations, the number of such

deleterious events increases with the number of generations.

As a result, to ensure decodability of the stored information,

the coding/decoding scheme must be capable of a level of error

correction. Motivated by this problem, we study designing

This work was supported in part by the NSF Expeditions in Computing
Program (The Molecular Programming Project).

codes that can correct errors arising from tandem duplications.

In addition to improving the reliability of data storage in

live DNA, studying such codes may help to acquire a better

understanding of how DNA stores and protects biological

information in nature.

Tandem duplication is the process of inserting a copy of a

segment of the DNA adjacent to its original position, resulting

in a tandem repeat. Different approaches to the problem of

error-control for data stored in live DNA have been proposed

in the literature. In the work of Arita and Ohashi [1], each

group of five bits of information is followed by one parity

bit for error detection. Heider and Barnekow [8] use the

extended (8,4) Hamming code or repetition coding to protect

the data. Yachie et al. [16] propose to enhance reliability by

inserting multiple copies of the data into multiple regions

of the genome of the host organism. Finally, Haughton and

Balado [7] present an encoding method satisfying certain

biological constraints studied in a substitution mutation model.

None of the aforementioned encodings, with the possible

exception of repetition coding, are designed to combat tandem

duplications, which is the focus of this paper. While repetition

coding can correct duplication errors, it is not an efficient

method because of its high redundancy.

It should also be noted that error-control for storage in

live DNA is inherently different from that in DNA that is

stored outside of a living organism (see [17] for an overview),

since the latter is not concerned with errors arising during

organic DNA replication. In this work, we ignore the po-

tential biological effects of embedding data into the DNA.

Furthermore, constructing codes that, in addition to tandem

duplication errors, can combat other types of errors, such as

substitutions, are postponed to a future work.

We also note that tandem duplication, as well as other dupli-

cation mechanisms, were studied in the context of information

theory [5], [6], [10]. However, these works used duplications

as a generative process, and attempted to measure its capacity

and diversity. In contrast, we consider duplications as a noise

source, and design error-correcting codes to combat it.

When a sequence has been corrupted by a tandem dupli-

cation channel, the challenge arises in finding the squarefree

root sequence from which the corrupted sequence could be

generated. For example, for the sequence ACGTGT, with

2016 IEEE International Symposium on Information Theory

978-1-5090-1806-2/16/$31.00 ©2016 IEEE 1028

GTGT as a tandem duplication error, the root sequence would

be ACGT since ACGTGT can be generated from ACGT by

doing a tandem duplication of length 2 on GT. But there can

be sequences which have more than one root. For example,

the sequence ACGCACGCG can be generated from ACG

by doing a tandem duplication of CG first, followed by a

tandem duplication of ACGC in ACGCG and can also be

generated from ACGCACG by doing a tandem duplication

of the suffix CG. Hence, ACGCACGCG has two squarefree

roots. But if we restrict the length of duplication to 2 in the

previous example, then ACGCACGCG has only one root

i.e., ACGCACG. This means that the number of roots that a

sequence can have depends on the set of duplication lengths

that are allowed. In fact, we find that tandem duplication

channels which have unique roots are the ones that allow

duplications of fixed length k and the other which allow

duplications of lengths bounded by 2 or 3. For all other cases,

we prove in Section V, that the duplication roots are not

necessarily unique. This unique root property for fixed length,

2- bounded and 3- bounded duplication channels allows us to

construct error correcting codes for them.

We will first consider the tandem duplication channel

with duplications of a fixed length k. For example with

k = 3, after a tandem duplication, the sequence ACAGT
may become ACAGCAGT, which may further become

ACAACAGCAGT where the copy is underlined. In our

analysis, we provide a mapping in which tandem duplications

of length k are equivalent to insertion of k zeros. Using this

mapping, we demonstrate the strong connection between codes

that correct duplications of a fixed length and Run-Length

Limited (RLL) systems. We present constructions for codes

that can correct an unbounded number of tandem duplications

of a fixed length and show that our construction is optimal,

i.e., of largest size. A similar idea was used in [4], where

they constructed codes for duplication-error correction with

the number of tandem duplications restricted to a given size

r and a duplication length of 1. In this paper, we generalize

their result by constructing optimal (i.e., maximum size) error-

correcting codes for arbitrary duplication length k and with no

restriction on the number of tandem duplications.

We also consider codes for correcting duplications of

bounded length. Here, our focus will be on duplication errors

of length at most 2 or 3, for which we will present a

construction that corrects any number of such errors. In the

case of duplication length at most 2 the codes we present are

optimal.

The paper is organized as follows. The preliminaries and

notation are described in Section II. In Sections III and IV we

present the results concerning duplications of a fixed length k
and duplications of length at most k, respectively. In Section

V, we characterize tandem duplication channels which do not

necessarily have a unique root. Due to the page limit, all proofs

appear in the full online version [11].

II. PRELIMINARIES

We let Σ denote some finite alphabet, and Σ∗ denote the set

of all finite strings (words) over Σ. The unique empty word is

denoted by ǫ. Given two words x, y ∈ Σ∗, their concatenation

is denoted by xy, and xt denotes the concatenation of t copies

of x, where t is some positive integer. By convention, x0 = ǫ.

We normally index the letters of a word starting with 1, i.e.,

x = x1x2 . . . xn, with xi ∈ Σ. With this notation, the t-prefix

and t-suffix of x are defined by

Preft(x) = x1x2 . . . xt, Sufft(x) = xn−t+1xn−t+2 . . . xn.

Given a string x ∈ Σ∗, a tandem duplication of length k is

a process by which a contiguous substring of x of length k is

copied next to itself. More precisely, we define the tandem-

duplication rules, Ti,k : Σ∗ → Σ∗, as

Ti,k(x) =

{

uvvw if x = uvw, |u| = i, |v| = k

x otherwise.

Two specific sets of duplication rules would be of interest to

us throughout the paper.

Tk =
{

Ti,k

∣

∣ i > 0
}

,

T6k =
{

Ti,k′
∣

∣ i > 0, 1 6 k′ 6 k
}

.

Given x, y ∈ Σ∗, if there exist i and k such that y = Ti,k(x),
then we say y is a direct descendant of x, and denote it by

x =⇒k y. If a sequence of t tandem duplications of length k
is employed to reach y from x we say y is a t-descendant of

x and denote it by x =⇒t
k y. More precisely, we require the

existence of t non-negative integers i1, i2, . . . , it, such that

y = Tit,k(Tit−1,k(. . . Ti1,k(x) . . .)).

Finally, if there exists a finite sequence of tandem duplications

of length k transforming x into y, we say y is a descendant

of x and denote it by x =⇒∗
k y. We note that x is its own

descendant via an empty sequence of tandem duplications.

Example 1. Let Σ = {0, 1, 2, 3} and x = 02123. Since,

T1,2(x) = 0212123 and T0,2(0212123) = 020212123, then

02123=⇒2 0212123 and 02123=⇒2
2 020212123, where in

both expressions, the relation could be replaced with =⇒∗
2 . ✷

We define the descendant cone of x as

D∗
k (x) =

{

y ∈ Σ∗

∣

∣

∣

∣

x
∗

=⇒
k

y

}

.

In a similar fashion we define the t-descendant cone Dt
k(x)

by replacing =⇒∗
k with =⇒t

k in the definition of D∗
k (x).

The set of definitions given thus far was focused on tandem-

duplication rules of substrings of length exactly k, i.e., for rules

from Tk. These definitions as well as others in this section

are extended in the natural way for tandem duplication rules

of length up to k, i.e., T6k. We denote these extensions by

replacing the k subscript with the 6 k subscript. Thus, we

also have D∗
6k(x) and Dt

6k(x).
Using the notation D∗

k , we restate the definition of the

tandem string-duplication system given in [6]. Given a finite

2016 IEEE International Symposium on Information Theory

1029

alphabet Σ, a seed string s ∈ Σ∗, the tandem string-duplication

system is given by

Sk = S(Σ, s, Tk) = D∗
k (s),

i.e., it is the set of all the descendants of s under tandem

duplication of length k.

The process of tandem duplication can be naturally reversed.

Given a string y ∈ Σ∗, for any positive integer, t > 0, we

define the t-ancestor cone as

D−t
k (y) =

{

x ∈ Σ∗

∣

∣

∣

∣

x
t

=⇒
k

y

}

,

or in other words, the set of all words for which y is a t-
descendant.

Yet another way of viewing the t-ancestor cone is by

defining the tandem-deduplication rules, T−1
i,k : Σ∗ → Σ∗,

as

T−1
i,k (y) =

{

uvw if y = uvvw, |u| = i, |v| = k

ǫ otherwise,

where we recall ǫ denotes the empty word. This operation

takes an adjacently-repeated substring of length k, and removes

one of its copies. Thus, a string x is in the t-ancestor cone

of y (where we assume x, y 6= ǫ to avoid trivialities) iff there

is a sequence of of t non-negative integers i1, i2, . . . , it, such

that

x = T−1
it,k

(T−1
it−1,k(. . . T−1

i1,k(y) . . .)).

In a similar fashion we define the ancestor cone of y as

D−∗
k (y) =

{

x ∈ Σ∗

∣

∣

∣

∣

x
∗

=⇒
k

y

}

.

By flipping the direction of the derivation arrow, we let ⇐=
denote deduplication. Thus, if y may be deduplicated to obtain

x in a single step we write y ⇐=k x. For multiple steps we

add ∗ in superscript.

A word y ∈ Σ∗ is said to be irreducible if there is nothing

to deduplicate in it, i.e., y is its only ancestor, meaning

D−∗
k (y) = {y}. The set of irreducible words is denoted by

Irrk. We will find it useful to denote the set of irreducible

words of length n by Irrk(n) = Irrk ∩Σn. The ancestors of

y ∈ Σ∗ that cannot be further deduplicated, are called the

roots of y, and are denoted by

Rk(y) = D−∗
k (y) ∩ Irrk .

Note that since the aforementioned definitions extend to

tandem duplication rules of length up to k, we also have

S6k, D−t
6k(y), D−∗

6k (y), Irr6k, Irr6k(n), and R6k(y). In some

previous works (e.g., [13]), Sk is called the uniform-bounded-

duplication system, whereas S6k is called the bounded-

duplication system.

Inspired by the DNA-storage scenario, we now define error-

correcting codes for tandem string-duplication systems.

Definition 2. An (n, M; t)k code C for the k-tandem-

duplication channel is a subset C ∈ Σn of size |C| = M, such

that for each x, y ∈ C, x 6= y, we have Dt
k(x) ∩ Dt

k(y) = ∅.

Here t stands for either a non-negative integer, or ∗. In the

former case we say the code can correct t errors, whereas in

the latter case we say the code can correct all errors. In a

similar fashion, we can define an (n, M; t)6k by replacing all

“k” subscripts by “6 k”.

Assume the size of the finite alphabet is |Σ| = q. We

then denote the size of the largest (n, M; t)k code over Σ

by Aq(n; t)k. The capacity of the channel is then defined as

capq(t)k = lim sup
n→∞

1

n
logq Aq(n; t)k.

Analogous definitions are obtained by replacing k with 6 k
or by replacing t with ∗.

III. k-TANDEM-DUPLICATION CODES

In this section we consider tandem string-duplication sys-

tems where the substring being duplicated is of a constant

length k. Such systems were studied in the context of for-

mal languages [13] (also called uniform-bounded-duplication

systems), and also in the context of coding and information

theory [6]. In [13] it was shown that for any finite alphabet

Σ, and any word x ∈ Σ∗, under k-tandem duplication x has a

unique root, i.e., |Rk(x)| = 1. In the section that follows we

give an alternative elementary proof to the uniqueness of the

root. This proof will enable us to easily construct codes for

k-tandem-duplication systems, as well as to state bounds on

their parameters.

We also mention [6], in which Sk was studied from a coding

and information-theoretic perspective. It was shown there that

the capacity of all such systems is 0. This fact will turn out to

be extremely beneficial when devising error-correcting codes

for k-tandem-duplication systems.

Throughout this section, without loss of generality, we

assume Σ = Zq. We also use Z
∗
q to denote the set of all finite

strings of Zq (not to be confused with the non-zero elements

of Zq), and Z
>k
q to denote the set of all finite strings over Zq

of length k or more.

We shall require the following mapping, φk : Z
>k
q → Z

k
q ×

Z
∗
q . The mapping is defined by,

φk(x) = (Prefk(x), Suff|x|−k(x)− Pref|x|−k(x)),

where subtraction is performed entry-wise over Zq. We easily

observe that φk is a bijection between Z
n
q and Z

k
q × Z

n−k
q

by noting that we can recover x from φk(x) in the following

manner: first set xi = φk(x)i, for all 1 6 i 6 k, and for

i = k + 1, k + 2, . . . , set xi = xi−k + φk(x)i, where φk(x)i

denotes the ith symbol of φk(x). Thus, φ−1
k is well defined.

Another mapping we define is one that injects k consecutive

zeros into a string. More precisely, we define ζi,k : Z
k
q ×

Z
∗
q → Z

k
q × Z

∗
q , where

ζi,k(x, y) =

{

(x, u0kw) if y = uw, |u| = i

(x, y) otherwise.

The following lemma will form the basis for the proofs to

follow.

2016 IEEE International Symposium on Information Theory

1030

Lemma 3. For all x ∈ Z
>k
q , φk(Ti,k(x)) = ζi,k(φk(x)).

Recalling that φk is a bijection between Z
n
q and Z

k
q ×Z

n−k
q ,

together with Lemma 3 gives us the following corollary.

Corollary 4. For any x ∈ Z
>k
q , and for any sequence of non-

negative integers i1, . . . , it,

Tit,k(. . . Ti1,k(x) . . .) = φ−1
k (ζit,k(. . . ζi1,k(φk(x)) . . .)).

Corollary 4 paves the way to working in the φk-transform

domain. In this domain, a tandem-duplication operation of

length k translates into an insertion of a block of k consecutive

zeros. Conversely, a tandem-deduplication operation of length

k becomes a removal of a block of k consecutive zeros.

The uniqueness of the root, proved in [13], now comes for

free. In the φk-transform domain, given (x, y) ∈ Z
k
q × Z

∗
q ,

as long as y contains a substring of k consecutive zeros, we

may perform another deduplication. The process stops at the

unique outcome in which the length of every run of zeros in

y is reduced modulo k.

This last observation motivates us to define the following

operation on a string in Z
∗
q . We define µk : Z

∗
q → Z

∗
q which

reduces the lengths of runs of zeros modulo k in the following

way. Consider a string x ∈ Z
∗
q , x = 0m0w10m1w2 . . . wt0

mt ,

where mi are non-negative integers, and w1, . . . , wt ∈ Zq \
{0}, i.e., w1, . . . , wt are single non-zero symbols. We define

µk(x) = 0m0 mod kw10m1 mod kw2 . . . wt0
mt mod k.

Additionally, we define

σk(x) =
(⌊m0

k

⌋

,
⌊m1

k

⌋

, . . . ,
⌊mt

k

⌋)

∈ (N ∪ {0})∗

and call σ(x) the zero signature of x. We note that µk(x) and

σ(x) together uniquely determine x.

Thus, our previous discussion implies the following corol-

lary.

Corollary 5. For any string x ∈ Z
>k
q ,

Rk(x) =
{

φ−1
k (y, µk(z))

∣

∣

∣
φk(x) = (y, z)

}

.

We recall the definition of the (0, k − 1)-RLL system over

Zq (for example, see [9], [14]). It is defined as the set of all

finite strings over Zq that do not contain k consecutive zeros.

We denote this set as CRLLq(0,k−1). In our notation,

CRLLq(0,k−1) =
{

x ∈ Z
∗
q

∣

∣

∣
σk(x) ∈ 0∗

}

.

By convention, CRLLq(0,k−1) ∩ Z
0
q = {ǫ}.

Given two strings, x, x′ ∈ Z
>k
q , we say x and x′ are k-

congruent, denoted x ∼k x′, if Rk(x) = Rk(x′). It is easily

seen that ∼k is an equivalence relation.

Corollary 6. Let x, x′ ∈ Z
∗
q be two strings, and denote

φk(x) = (y, z) and φk(x′) = (y′, z′). Then x ∼k x′ iff y = y′

and µk(z) = µk(z
′).

The following lemma appeared in [13, Proposition 2]. We

restate it and give an alternative proof.

Lemma 7. For all x, x′ ∈ Z
>k
q , we have D∗

k (x)∩ D∗
k (x′) 6= ∅

if and only if x ∼k x′.

We now turn to constructing error-correcting codes. The first

construction is for a code capable of correcting all errors.

Construction A. For all n > k > 1 we construct

C =
⌊n/k⌋−1

⋃

i=0

{

φ−1
k (y, z0ki)

∣

∣

∣
φ−1

k (y, z) ∈ Irrk(n − ik)
}

.

Theorem 8. The code C from Construction A is an (n, M; ∗)k

code, with M = ∑
⌊n/k⌋−1
i=0 qk MRLLq(0,k−1)(n − (i + 1)k).

Here MRLLq(0,k−1)(m) denotes the number of strings of length

m which are (0, k − 1)-RLL over Zq.

We can say more about the size of the code we constructed.

Theorem 9. The code C from Construction A is optimal.

The code C from Construction A also allows a simple

decoding procedure, whose correctness follows from Corol-

lary 5. Assume a word x′ ∈ Z
>k
q is received, and let

φk(x′) = (y′, z′). The decoded word is simply x̃ =
φ−1

k (y′, µk(z
′)0n−k−|µk(z′)|), where n is the length of the code

C. In other words, the decoding procedure recovers the unique

root of the received x′, and in the φk-transform domain, pads

it with enough zeros.

Encoding may be done in any of the many various ways

for encoding RLL-constrained systems. The reader is referred

to [9], [14] for further reading. After encoding the RLL-

constrained string z, a string y ∈ Z
k
q is added, and φ−1

k
employed, to obtain a codeword.

Finally, the asymptotic rate of the code family may also be

obtained, thus, obtaining the capacity of the channel.

Corollary 10. For all q > 2 and k > 1,

capq(∗)k = cap(RLLq(0, k − 1)),

where cap(RLLq(0, k − 1)) is the capacity of the q-ary (0, k −
1)-RLL constrained system.

As a side note, we comment that an asymptotic (in k)

expression for the capacity may be given by

cap(RLLq(0, k)) = log2 q −
(q − 1) log2 e

qk+2
(1 + o(1)). (1)

IV. 6 k-TANDEM-DUPLICATION CODES

In this Section, we consider error-correcting codes that

correct duplications of length at most k, which correspond to

S6k, i.e., bounded tandem string-duplication systems, where

the substring being duplicated is of maximum length k. In

particular, we present constructions for codes that can correct

any number of duplications of length 6 3 as well as a lower

bound on the capacity of the corresponding channel. In the

case of duplications of length 6 2 we give optimal codes, and

obtain the exact capacity of the channel.

It is worth noting that the systems S6k were studied in the

context of formal languages [13] and also in the context of

coding and information theory [10]. In [13], it was shown that

2016 IEEE International Symposium on Information Theory

1031

S6k, with k > 4, is not a regular language for alphabet size

|Σ| > 3. However, it was proved in [10] that S63 is indeed

a regular language irrespective of the starting string and the

alphabet size.

In this paper, we will show that strings that can be generated

by bounded tandem string-duplication systems with maximum

duplication length 3 have a unique deduplication root, a fact

that will be useful for our code construction.

Theorem 11. For any z ∈ Σ∗ we have |R63(z)| = 1, following

which |R62(z)| = |R61(z)| .

In a similar fashion to the previous section, we define the

following relation. We say x, x′ ∈ Σ∗ are 6 3-congruent,

denoted x ∼63 x′, if R63(x) = R63(x′). Clearly ∼63 is an

equivalence relation. Having shown any sequence has a unique

root when duplicating up to length 3, we obtain the following

corollary.

Corollary 12. For any two words x, x′ ∈ Σ∗, if D∗
63(x) ∩

D∗
63(x′) 6= ∅ then x ∼63 x′.

We note that unlike Lemma 7, we do not have x ∼63 x′

necessarily imply that their descendant cones intersect. Here

is a simple example illustrating this case. Fix q = 3, and

let x = 012012 and x′ = 001122. We note that x ∼63 x′,
since R63(x) = R63(x′) = {012}. However, D∗

63(x) ∩
D∗
63(x′) = ∅ since all the descendants of x have a 0 to

the right of a 2, whereas all the descendants of x′ do not.

We are missing a simple operator which is required to define

an error-correcting code. For any sequence x ∈ Σ+, we define

its k-suffix-extension to be ξk(x) = x(Suff1(x))k, i.e., the

sequence x with its last symbol repeated an extra k times.

For the remainder of the section we denote by Irrq;63 the set

of irreducible words with respect to ⇐=63 over Zq, in order

to make explicit the dependence on the size of the alphabet.

Construction B. Let Σ be some finite alphabet. The con-

structed code is Ck =
⋃n

i=1 {ξn−i(x) | x ∈ Irr6k(i)}.

Theorem 13. The code C3 from Construction B is an

(n, M; ∗)63 code, where M = ∑
n
i=1 |Irr63(i)| and

capq(∗)63 > cap(Irrq;63).

For q = 3, cap(Irr3;63) = 0.347934.
Stronger statements can be given when the duplication

length is upper bounded by 2 instead of 3.

Lemma 14 For all x, x′ ∈ Σ∗, we have D∗
62(x) ∩ D∗

62(x′) 6=
∅ if and only if x ∼62 x′.

Theorem 15. The code C2 from Construction B is an op-

timal (n, M; ∗)62 code, where M = ∑
n
i=1 |Irr62(i)| and

capq(∗)62 > cap(Irrq;62).

V. DUPLICATION ROOTS

In Section III, we stated that if the duplication length is

uniform (i.e., a constant k), then every sequence has a unique

root. Further in Section IV, we proved in Theorem 11 that if

the duplication length is bounded by 3 (i.e. 6 3), then again

every sequence will have a unique root. In fact, the two cases

proved in the paper are the only cases of tandem duplication

channels that have a unique root given a sequence, namely, in

all other cases, the duplication root is not necessarily unique.

The characterization is stated in the following Theorem.

Theorem 16 Given Σ with |Σ| > 3 and a non-empty set of

duplication lengths U, there exists a sequence z ∈ Σ∗ with

|RU(z)| > 1 given U 6= {k} for some k > 1, U 6= {1, 2} and

U 6= {1, 2, 3}.

VI. CONCLUSION

Further results are described in the full version [11]. Most

notably, we address the problem of (n, M; t)k codes, i.e., codes

for fixed-length duplication that can correct only a bounded

number of errors. Many open problems remain. We mention

in particular the study of the intricate structure we encounter

in Sk63, where strings with a common (unique) root may still

have non-intersecting descendant cones.

REFERENCES

[1] M. Arita and Y. Ohashi, “Secret signatures inside genomic DNA,”
Biotechnology Progress, vol. 20, no. 5, pp. 1605–1607, 2004.

[2] F. Balado, “Capacity of DNA data embedding under substitution muta-
tions,” IEEE Trans. Inform. Theory, vol. 59, no. 2, pp. 928–941, Feb.
2013.

[3] C. T. Clelland, V. Risca, and C. Bancroft, “Hiding messages in DNA
microdots,” Nature, vol. 399, no. 6736, pp. 533–534, 06 1999.

[4] L. Dolecek and V. Anantharam, “Repetition error correcting sets: explicit
constructions and prefixing methods,” SIAM J. Discrete Math., vol. 23,
no. 4, pp. 2120–2146, 2010.

[5] F. Farnoud, M. Schwartz, and J. Bruck, “A stochastic model for genomic
interspersed duplication,” in Proceedings of the 2015 IEEE International

Symposium on Information Theory (ISIT2015), Hong Kong, China SAR,
Jun. 2015, pp. 1731–1735.

[6] ——, “The capacity of string-duplication systems,” IEEE Trans. In-

form. Theory, vol. 62, no. 2, pp. 811–824, Feb. 2016.
[7] D. Haughton and F. Balado, “BioCode: Two biologically compatible

algorithms for embedding data in non-coding and coding regions of
DNA,” BMC Bioinformatics, vol. 14, no. 1, pp. 1–16, 2013.

[8] D. Heider and A. Barnekow, “DNA-based watermarks using the DNA-
Crypt algorithm,” BMC Bioinformatics, vol. 8, no. 1, pp. 1–10, 2007.

[9] K. A. S. Immink, Coding Techniques for Digital Recorders. Prentice-
Hall, 1991.

[10] S. Jain, F. Farnoud, and J. Bruck, “Capacity and expressiveness of
genomic tandem duplication,” in Proceedings of the 2015 IEEE Interna-

tional Symposium on Information Theory (ISIT2015), Hong Kong, SAR

China, Jun. 2015, pp. 1946–1950.
[11] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting

codes for data storage in the DNA of living organisms,” Paradise
Laboratory, California Institute of Technology, Tech. Rep. ETR131,
Jan. 2016. [Online]. Available: http://www.paradise.caltech.edu/papers/
etr131.pdf

[12] D. C. Jupiter, T. A. Ficht, J. Samuel, Q.-M. Qin, and P. de Figueiredo,
“DNA watermarking of infectious agents: Progress and prospects,” PLoS
Pathog, vol. 6, no. 6, p. e1000950, 06 2010.

[13] P. Leupold, C. Martı́n-Vide, and V. Mitrana, “Uniformly bounded
duplication languages,” Discrete Appl. Math., vol. 146, no. 3, pp. 301–
310, 2005.

[14] D. Lind and B. H. Marcus, An Introduction to Symbolic Dynamics and

Coding. Cambridge University Press, 1985.
[15] P. C. Wong, K.-k. Wong, and H. Foote, “Organic data memory using the

DNA approach,” Commun. ACM, vol. 46, no. 1, pp. 95–98, Jan. 2003.
[16] N. Yachie, Y. Ohashi, and M. Tomita, “Stabilizing synthetic data in the

DNA of living organisms,” Systems and Synthetic Biology, vol. 2, no.
1-2, pp. 19–25, 2008.

[17] S. M. H. T. Yazdi, H. M. Kiah, E. R. Garcia, J. Ma, H. Zhao,
and O. Milenkovic, “DNA-based storage: Trends and methods,” arXiv

preprint: http://arxiv.org/abs/1507.01611, 2015.

2016 IEEE International Symposium on Information Theory

1032

