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Abstract—The driving force behind the generation of biological
sequences are genomic mutations that shape these sequences
throughout their evolutionary history. An understanding of the
statistical properties that result from mutation processes is of
value in a variety of tasks related to biological sequence data, e.g.,
estimation of model parameters and compression. At the same
time, due to the complexity of these processes, designing tractable
stochastic models and analyzing them are challenging. In this
paper, we study two types of mutations, tandem duplication and
substitution. These play a critical role in forming tandem repeat
regions, which are common features of the genome of many
organisms. We provide a stochastic model and, via stochastic
approximation, study the behavior of the frequencies of N -
grams in resulting sequences. Specifically, we show that N -gram
frequencies converge almost surely to a set which we identify as
a function of model parameters. From these frequencies, other
statistics can be derived. In particular, we present a method for
finding upper bounds on entropy.

I. INTRODUCTION

Genomic sequences are formed over billions of years by
biological mutation processes, including insertions, deletions,
duplications, and substitutions. These processes can be viewed
as stochastic string editing operations that shape the statistical
properties of sequence data. For any given set of such pro-
cesses and the associated probabilities, however, it is difficult
to characterize the statistical properties that will arise. At the
same time, understanding these properties is beneficial in both
analysis and storage of the vast amount of biological data that
is available nowadays.

In this paper, our goal is to provide a better understanding of
the behavior of tandem duplication and substitution mutations
by studying the evolution of N -gram frequencies (a.k.a. k-
mer frequencies) as substrings of a sequence undergoing these
mutations. N -gram frequencies are of interest since they allow
us to determine the substrings that are likely to be generated
under different modeling assumptions. In addition, they can
be used to learn other properties of the sequence, e.g., bounds
on entropy, which provides a limit of compression. Given
sequence data, they can also be used to estimate model
parameters, i.e., mutation rates.

Duplication refers to copying a segment of the sequence
(called the template) and inserting it into the sequence. The
two main types of duplication are interspersed duplication
and tandem duplication. In the former, there is generally
no relationship between where the template is located and

where the copy is inserted. In the latter, which is the type
of duplication studied here, the copy is inserted immediately
after the template. This process is generally thought to be
caused by slipped-strand mispairings [1], where during DNA
synthesis, one strand in a DNA duplex becomes misaligned
with the other. A substitution refers to changing a symbol
in the sequence. Tandem duplications and substitutions, along
with other mutations, lead to tandem repeats, i.e., stretches
of DNA in which the same pattern is repeated many times.
Depending on the length of the pattern, these repeats are
referred to as microsatellites or minisatellites. Tandem repeats
are known to cause important phenomena such as chromosome
fragility [2].

In our model, a sequence evolves only through tandem
duplications of different lengths and substitutions. In reality
other mutations, such as deletions, are also present in tandem
repeat regions. However, for the sake of simplicity they are not
included in our model. The analysis of more complete models
is left to future work. Furthermore, the term evolution refers
to changes resulting from random mutations. The significantly
more complex effect of natural selection is not considered.

Our study starts by considering how N -gram frequencies
(number of occurrences divided by the length of the evolving
string) change as a result of different mutations. To analyze
such frequencies, we use the stochastic approximation method,
which enables modeling a discrete dynamic system by a
corresponding continuous model described by an ordinary
differential equation (ODE). We show that the resulting ODE
is stable and prove that N -gram frequencies converge almost
surely to a set determined by the ODE. Our approach allows
us to compute the limit for the frequency of any N -gram as a
function of model parameters. We will then use these results
to provide bounds on the entropy of sequences generated by
the aforementioned mutation processes.

In previous work, the related problem of finding the com-
binatorial capacity of tandem duplication systems has been
studied [3], [4]. Systems with both tandem duplication and
substitution, again from a combinatorial point of view, were
studied in [5]. The stochastic approximation framework has
been used for studying interspersed duplications [6] and esti-
mation of model parameters in tandem duplication systems [7].
Estimating the entropy of DNA sequences has been studied in
[8], [9]. However neither of these are based on stochastic se-
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quence evolution models nor are they capable of characterizing
the asymptotic frequencies of N -grams.

The rest of the paper is organized as follows. Notation and
preliminaries are given in the next section. In Section III, we
derive the expected behavior of the N -gram frequencies under
tandem duplication and substitution. The proof of convergence
and the limits are given in Section IV. Bounds on entropy are
presented in Sections V. Section VI provides the concluding
remarks. Due to space limitations, some of the proofs are
omitted.

II. PRELIMINARIES AND NOTATION

For a positive integer m, let [m] = {1, . . . ,m} and Zm =
{0, . . . ,m− 1}. For an alphabet Σ, the set of all finite strings
over Σ is denoted Σ∗. The elements in strings are indexed
starting from 0, e.g., s = s0 · · · sm−1, where |s| = m is the
length of s. For 0 ≤ i, j ≤ m− 1, sji denotes sisi+1 · · · sj . A
j-(sub)string is a (sub)string of length j. For u,v ∈ Σ∗, their
concatenation is denoted by uv. For a positive integer j, uj

is a concatenation of j copies of u, where u is a string or a
single symbol. Note that the superscript j in uji and uj has
different meanings.

Consider an initial string s0 and a process where in each
step a random transform, or “mutation”, is applied to sn,
resulting in sn+1. To avoid the complications arising from
boundaries, we assume the strings sn are circular, with a given
origin and direction. The indexing is modulo the length |sn|
of sn. Our attention is focused on tandem duplication and
substitution mutations. As an example of a tandem duplication,
from s = 012345 we may obtain s′ = 012342345, where the
template, is overlined and the copy is underlined. The length of
a duplication is the length of the template (3 in the preceding
example). A substitution changes one of the elements of sn to
a different symbol from the alphabet, e.g., 012345→ 015345.
We assign probability q0 to substitutions, where a position is
chosen uniformly at random and the current symbol is changed
with equal probability to one of the other alphabet symbols.
Furthermore, to a duplication of length k we assign probability
qk. The position of the template is chosen at random among
the |sn| possible options. We assume there exists K such that
qk = 0 for k > K. Hence,

∑K
k=0 qk = 1.

Stochastic Approximation: Let U denote the set of N -
grams, that is, U = ΣN , and whenever an ordering of those
strings is required we shall assume a lexicographic ordering.
For u ∈ U , let µun denote the number of occurrences of
substring u in sn, and µn = (µun)u∈U . Let xun =

µu
n

|sn| , we
are interested in the asymptotic behavior of xn = µn

|sn| =

(xun)u∈U , the vector of the frequencies of the substrings.
Let ln+1 = |sn+1|−|sn| and define Ek[·] to be the expected

value conditioned on ln+1 = k. We also let {Fn} be the
filtration generated by the random variables {xn, |sn|}. Define

δk(x) = δk(xn) = Ek[µn+1 − µn|Fn]

hk(x) = δk(x)− kx

h(x) =
∑
k

qkhk(x).
(1)

The vector δk represents the expected change in the vector of
the frequencies of N -grams assuming a substitution (k = 0)
or a duplication of length k has occurred. Here, we have
assumed that Ek[µn+1 − µn|Fn] depends only on xn, and
given xn, it is independent from µn and n. The correctness
of this assumption will be evident from Theorem 2. Because
of independence from n, we write δk(x) = δk(xn). Further-
more, the element of δk that corresponds to u is denoted by
δuk (x). More precisely, δuk (xn) = Ek[µun+1 − µun |Fn]. This
notation also extends to h. The vector h determines the overall
expected behavior of the system.

If a certain set of conditions are satisfied, then Theorem 1
below can be used to relate the discrete system whose ex-
pected behavior is described by h(xn) to a continuous system
described by an ordinary differential equation (ODE). The
required conditions are similar to those in [6] and hold in
our setup. An additional condition requires

∑
n 1/|sn| = ∞

and
∑
n 1/|sn|2 <∞, which can be proven using the Borel-

Cantelli lemma if q0 < 1.

Theorem 1. (See [10, Theorem 2]) The sequence {xn}
converges almost surely to a compact connected internally
chain transitive invariant set of the ODE dxt/dt = h(xt).

To find the aforementioned differential equation, we need
to find δuk (x) for all k with qk > 0 and u ∈ U . In finding
δuk (x), the following definitions will be useful.

For u ∈ Σ∗ and k > 0, define φk(u) to be a vector of length
|u| whose ith element determines if the symbol in position i
of u equals the symbol in position i − k. More specifically,
the ith element of φk(u) is

φk(u)i =


Xi, i = 0, 1, 2, . . . k − 1

0, i ≥ k, ui = ui−k

B, i ≥ k, ui 6= ui−k,

where the Xi and B are dummy variables. Only the positions
of ‘0’s in φk(u) are of importance to us. Let the lengths of the
maximal runs of ‘0’s immediately after Xk−1 and at the end of
φk(u) be denoted by lu and ru, respectively. Note that either
of these may be equal to 0. If φk(u) = Xk−1

0 0N−k, then lu =
ru = N − k. Otherwise, we have φk(u) = Xk−1

0 0luY 0ru ,
for some Y that starts and ends with B. For example, for
u = 0100110110, we have φ3(u) = X2

0 00B0000, lu = 2,
and ru = 4.

To enable us to succinctly represent the results, we define
several functions. These functions relate u to the frequencies
of other substrings that can generate u via appropriate dupli-
cation events. First, for N ≥ k, let

Guk (x) =
∑
z

xu
z−1
0 uN−1

z+k ,

where the sum is over all z such that (φk(u))
z+k−1
z = 0k.

For u = 0100110110, Gu3 (x) = 2x0100110.
Furthermore, for k > 0 and N ≥ k + 1, let

Fuk,l(x) =

min(lu,k−1)∑
i=1

xu
N−1
i , Fuk,r(x) =

min(ru,k−1)∑
i=1

xu
N−1−i
0 ,
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Mu
k (x) =


k−1∑

b=N−k+1

xu
k−1
b ub−1

0 , if φk(u) = Xk−1
0 0N−k

0, else

We use B1(u) to denote set of strings at Hamming distance
1 from u. Also for u,v ∈ Σ∗, the indicator function I(u,v)
equals 1 if u = v and equals 0 otherwise.

III. EVOLUTION OF SUBSTRING FREQUENCIES

In this section, we first find δk(x) = (δuk (x))u∈U for
k > 0 (duplication) and then for k = 0 (substitution).
This will enable us to show that the substring frequencies
converge almost surely and find the limit set. We only consider
substrings u of length N > k for each k since the frequencies
of shorter substrings can be obtained from these. So for the
whole model, we can only consider u of length N > K.

Theorem 2. For an integer k > 0 and a string u =
u0u1 · · ·uN−1, if k + 1 ≤ N < 2k, then

δuk (x) = Fuk,l(x) + Fuk,r(x) +Mu
k (x)− (N − 1− k)xu,

and if N ≥ 2k,

δuk (x) = Fuk,l(x) + Fuk,r(x) +Guk (x)− (N − 1− k)xu.

Before proving the theorem, we present two examples for
k = 3 and Σ = [3]:

δ1231
3 (x) = x123 + x231 + x312

δ12312312
3 (x) = 3x12312 + x123123 + x1231231+

x312312 + x2312312 − 4x12312312

Proof: Suppose a duplication of length k occurs in sn,
resulting in sn+1. The number of occurrences of u may
change due to the duplication event. To study this change,
we consider the N -substrings of sn that are eliminated (do
not exist in sn+1) and the N -substrings of sn+1 that are new
(do not exist in sn). Any new N -substring must intersects
with both the template and the copy in sn+1. Likewise, an
eliminated N -substring must include symbols on both sides of
the template in sn, i.e., the template must be a strict substring
of the N -substring that includes neither its leftmost symbol
nor its rightmost symbol.

As an example, suppose

sn = v12345678w, sn+1 = v12345645678w,

where k = 3, the (new) copy is underlined, and v,w ∈
∑∗.

Let N = 5. The new 5-substrings are 34564, 45645, 56456,
64567 and the eliminated substring is 34567. Formally, let

sn = a0 · · · aiai+1 · · · ai+kai+k+1 · · · a|sn|−1,

sn+1 = a0 · · · aiai+1 . . . ai+kai+1 . . . ai+kai+k+1 . . . a|sn|−1,

where the substring ai+1 · · · ai+k is duplicated. The new N -
substrings created in sn+1 are

yb = ai+k+1−bai+k+2−b . . . ai+kai+1ai+2 . . . ai+N−b,

for 1 ≤ b ≤ N − 1. Note that we have defined b such that
the first element of the copy, ai+1, is at position b in yb. The

sn+1

Case 1 u

Case 2 u

Case 3 u

Case 1 u

Case 2 u

Case 3 u

Figure 1. Possible cases for new occurrences of u in sn+1. Cases above
and below sn+1 correspond to k + 1 ≤ N < 2k and N ≥ 2k, respectively.
The hatched boxes, from left to right, are the template and the copy.

N -substrings eliminated from sn are ai−c+1 · · · ai+N−c, for
1 ≤ c ≤ N − k − 1.

For a given u, let Yb denote the indicator random variable
for the event that yb = u, that is, the duplication creates a
new occurrence of u in sn+1 in which the first symbol of the
copy is in position b. In the example above, if u = 45645,
then y3 = u and thus Y3 = 1.

Furthermore, let W denotes the number of occurrences of
u that are eliminated. We have

δuk (x) =

N−1∑
b=1

Ek[Yb|Fn]− Ek[W |Fn]

=

N−1∑
b=1

Ek[Yb|Fn]− (N − k − 1)xu,

where the second equality follows from the fact that each of
the N − k − 1 eliminated N -substrings are equal to u with
probability xu.

To find δuk , it suffices to find Ek[Yb|Fn], or equivalently,
Pr(Yb = 1|Fn, l = k). We consider different cases based
on the value of b, which determines how u overlaps with
the template and the copy. These cases are illustrated in
Figure 1 and are considered in Lemmas 3–5. Summing over
the expressions provided by these lemmas provides the desired
result. We omit the details, as well as the proofs of Lemmas 4
and 5 due to similarity to that of Lemma 3.

Lemma 3 (Case 1). For 1 ≤ b < min(k,N − k + 1),

Ek[Yb|Fn] = xu
N−1
b I(ub−1

0 ,uk+b−1
k ).

Proof: For 1 ≤ b < min(k,N−k+1) (regardless of N ≥
2k or N < 2k), the new occurrences of u always contains
some (but not all) of the template and all of the new copy.
This scenario is labeled as Case 1 in Figure 1.

Suppose Yb = 1. Since the copy and the template are
identical, elements of u that coincide with the same positions
in these two substrings must also be identical. So a necessary
condition for Yb = 1 is ub−1

0 = uk+b−1
k .

Assume this condition is satisfied. Then Yb = 1 if and only
if the sequence starting at the beginning of the template in sn
is equal to uN−1

b , which has probability xu
N−1
b .
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Lemma 4 (Case 2). Suppose min(k,N − k + 1) ≤ b <
max(N − k + 1, k). If N ≥ 2k, then

Ek[Yb|Fn] = xu
b−k−1
0 uN−1

b I(ub−1
b−k,u

b+k−1
b ),

and if k + 1 ≤ N ≤ 2k − 2, then

Ek[Yb|Fn] = xu
k−1
b ub−1

0 I(uN−1−k
0 ,uN−1

k ).

Note that this case cannot occur if N = 2k − 1.

Lemma 5 (Case 3). For max (N − k + 1, k) ≤ b ≤ N − 1,

Ek[Yb|Fn] = xu
b−1
0 I(uN−k−1

b−k ,uN−1
b ).

We now turn our attention to substitutions (k = 0).

Theorem 6. For a string u of length N , we have

δu0 =
1

|Σ| − 1

∑
v∈B1(u)

xv −Nxu.

Before proving the theorem, we give an example for Σ =
{1, 2, 3}:

δ123
0 =

1

2
(x223 + x323 + x113 + x133 + x121 + x122)− 3x123

Proof: A new occurrence of u results from an appropriate
substitution in some v ∈ B1(u), which has probability
xv/(|Σ| − 1). On the other hand, an occurrence of u is
eliminated if a substitution occurs in any of its N positions.
So the expected number occurrences that vanish is Nxu.

IV. ODE AND THE LIMITS OF SUBSTRING FREQUENCIES

Theorems 2 and 6 provide expressions for δk for 0 ≤ k ≤
K. With these results in hand, we can formulate an ordinary
differential equation (ODE) whose limits are the same as those
of the substring frequencies of interest, x = (xu)u∈U , where
U is the set of strings of length N ≥ k+1. The ODE is of the
form dxt

dt = Axt, where A is determined using Theorems 2
and 6 as described in (1). On the right side in expressions
for δk, terms of the form xv appear where v /∈ U . However,
we have |v| < N , so we replace xv with

∑
w x

w, where
the summation is over all strings w of length N such that
v is a prefix of w. For example, consider q0 = α, q1 =
1 − α, and Σ = {0, 1}. From Theorems 2 and 6, for x =
(x00, x01, x10, x11), we have dx/dt = Ax, where

A =


−2α 1 α 0
α −(1 + α) 0 α
α 0 −(1 + α) α
0 α 1 −2α

. (2)

Theorem 7. Consider a tandem duplication and substitution
system with distribution q = (qk) over these mutations such
that qk = 0 for k > K and q0 < 1. The frequencies of
substrings u of length N ≥ K + 1 converges almost surely to
the null space of the matrix A, described above.

Proof: We first show that the resulting ODE is stable.
This is done by applying the Gershgorin circle theorem
to the columns of A (see e.g., (2)). In each column, the

diagonal element is the only element that can be negative.
We show that each column of A sums to 0, which implies
that the rightmost point of each circle is the origin. Thus,
each eigenvalue of A is either 0 or has a negative real part.
Define Ak to be the matrix satisfying hk(x) = Akx so that
h(x) = Ax =

∑
k qkhk(x) =

∑
k qkAkx. For the example

of (2), the matrices A0 and A1 are

A0 =


−2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2

, A1 =


0 1 0 0
0 −1 0 0
0 0 −1 0
0 0 1 0

.
We show that each column of Ak sums to zero for each k,

which implies the desired result. Fix v ∈ U and consider the
column in Ak that corresponds to xv . To identify the elements
in this column, we must consider expressions for huk (x) =
δuk (x) − kx and check if xv appears on the right side. For
k > 0, the only negative term corresponds to hvk , where the
coefficient is −(N−1). Inspecting the proofs of Lemmas 3–5
shows that for each value of b ∈ [N − 1], there is only one u
such that xv appears in huk with a nonnegative coefficient, and
the coefficient is 1. For example, for b = 1, from Lemma 3,
this u is equal to vkv

N−1
1 . Since there are N − 1 possible

choices for b, the sum of every column in Ak is 0, as desired.
For k = 0, we have huk (x) = δuk (x), where δuk (x) is given in
Theorem 6. The column corresponding to xv has a negative
term equal to −N and N(|Σ| − 1) positive terms, where each
of the positive terms is equal to 1

|Σ|−1 , so the sum is again 0.
We have shown that all eigenvalues are either 0 or have

negative real parts. For any valid initial point x0, the sum of
the elements must be 1. Furthermore, each element must be
nonnegative. The fact that the columns of A sum to 0 shows
that the sum of the elements of any solution xt also equals 1.
Furthermore, since only diagonal terms in A can be negative,
each element of xt is also nonnegative. Thus xt is bounded.

From the Jordan canonical form theorem, we can write A =
PJP−1, for an invertible matrix of generalized eigenvectors
P . Let yt = P−1xt, let C be any compact internally chain
transitive set of the ODE ẏt = Jyt. From the boundedness of
xt, and thus yt, and the fact that all eigenvalues of A except
for 0 have negative real parts, we can prove that all flows
initiated in C are constant. The same must hold for all flows
in D, for any D that is an internally chain transitive invariant
set of the ODE ẋt = Axt. Hence, any point in x ∈ D must
be in the null space of A, that is, Ax = 0.

For example, for the matrix A of (2), the vector in the null
space whose elements sum to 1, and thus the limit of xn, is

1

2(1 + 3α)
(α+ 1, 2α, 2α, α+ 1)

T
. (3)

As α → 1, all four 2-substrings become equally likely, each
with probability 1/4. Note however that our analysis is not
applicable to q0 = α = 1 since the condition

∑
n 1/|sn|2 <

∞ is not satisfied. On the other hand, for a small probability
of substitution, 0 < α � 1, almost all 2-substrings are either
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00 or 11, as expected. For α = 0, the null space is spanned
by z1 = (1, 0, 0, 0)T and z2 = (0, 0, 0, 1)T and the limit set
is {az1 + (1− a)z2 : 0 ≤ a ≤ 1}.

V. BOUNDS ON ENTROPY

The entropy of this process may be upper bounded using
techniques from semiconstrained systems [11]–[13]. We first
formally define the entropy, and then argue that it is upper
bounded by an appropriately defined semiconstrained system.

Consider the string sn, obtained from s0 by n rounds
of mutations, as described previously. Its length is |sn| =
|s0| +

∑n
i=1 li, and its expected length is E[|sn|] = |s0| +

n
∑K
i=1 iqi. We define the entropy after n rounds as

Hn = − 1

E[|sn|]
∑
w∈Σ∗

Pr(sn = w) log|Σ| Pr(sn = w),

as well as H∞ = lim supn→∞Hn.
Let us recall some definitions concerning semiconstrained

systems (see [13]). Let P(ΣN ) denote the set of all probability
measures on ΣN . A semiconstrained system is defined by
Γ ⊆ P(ΣN ). The set of admissible words of the semi-
constrained system, denoted B(Γ), contains exactly all finite
words over the alphabet Σ, whose N -gram distribution is in
Γ, and B`(Γ) = B(Γ) ∩ Σ`. An expansion of Γ by ε > 0 is
defined as

Bε(Γ) =

{
ξ ∈ P(ΣN ) : inf

ν∈Γ
‖ν − ξ‖TV ≤ ε

}
,

where ‖ · ‖TV denotes the total-variation norm. The capacity
of Γ is then defined as

cap(Γ) = lim
ε→0+

lim sup
n→∞

1

n
log|Σ||Bn(Bε(Γ))|,

which intuitively measures the information per symbol in
strings whose N -gram distribution is “almost” in Γ.

Theorem 8. For the mutation process described above,H∞ ≤
cap(Γ), where Γ is the compact connected internally chain
transitive invariant set that xn converges almost surely to by
Theorem 1.

Remark 9. We comment that if Γ = {ξ}, i.e., Γ contains a
single shift-invariant measure1, then cap(Γ) has a nice form
(see [11], [13]):

cap(Γ) = −
∑

a1...aN∈ΣN

ξa1...aN log|Σ|
ξa1...aN

ξ̄
a1...aN−1

,

where ξ̄ is the marginal of ξ on the first N − 1 coordinates,
i.e., ξ̄a1...aN−1 =

∑
b∈Σ ξ

a1...aN−1b.

We use the preceding remark to find an upper bound on the
system whose limit is given by (3). We have ξ̄0

= ξ̄
1

= 1/2.
It then follows that for this system H∞ ≤ H2

(
2α

1+3α

)
, where

H2 is the binary entropy function.

1A shift-invariant measure ξ ∈ P(ΣN ) is a measure that satisfies∑
a∈Σ ξ

aw =
∑

a∈Σ ξ
wa for all w ∈ ΣN−1. The N -gram distributions

of cyclic strings are always shift invariant, and thus a converging sequence of
such measures also converges to a shift-invariant measure.

VI. CONCLUSION

In this paper, we provided a method for determining the
limits of N -gram frequencies (as substrings of the evolving
sequence) for tandem duplications and substitutions. We also
presented a method for finding upper bounds on the entropy
of these systems. One direction for extending the current work
is including other mutation types that are present in tandem
repeat regions such as deletions and insertions. Open problems
include quantifying the finite-time behavior in these systems,
determining the rate of convergence to the limits, and lower
bounds on entropy.
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