
J Comb Optim (2016) 32:1133–1164
DOI 10.1007/s10878-015-9930-6

Approximate sorting of data streams with limited
storage

Farzad Farnoud1 · Eitan Yaakobi1 ·
Jehoshua Bruck1

Published online: 28 August 2015
© Springer Science+Business Media New York 2015

Abstract We consider the problem of approximate sorting of a data stream (in one
pass) with limited internal storage where the goal is not to rearrange data but to output
a permutation that reflects the ordering of the elements of the data stream as closely
as possible. Our main objective is to study the relationship between the quality of the
sorting and the amount of available storage. To measure quality, we use permutation
distortion metrics, namely the Kendall tau, Chebyshev, and weighted Kendall metrics,
as well as mutual information, between the output permutation and the true ordering
of data elements. We provide bounds on the performance of algorithms with limited
storage and present a simple algorithm that asymptotically requires a constant factor
as much storage as an optimal algorithm in terms of mutual information and average
Kendall tau distortion.We also study the case inwhich only information about themost
recent elements of the stream is available. This setting has applications to learning user
preference rankings in services such as Netflix, where items are presented to the user
one at a time.

Keywords Approximate sorting · Data stream · Limited storage · Permutation
distortion metrics · Weighted Kendall distortion · User preference ranking

B Farzad Farnoud
farnoud@caltech.edu

Eitan Yaakobi
yaakobi@caltech.edu

Jehoshua Bruck
bruck@caltech.edu

1 California Institute of Technology, Pasadena, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-015-9930-6&domain=pdf
http://orcid.org/0000-0002-8684-4487

1134 J Comb Optim (2016) 32:1133–1164

1 Introduction

In many applications, such as sensor networks, finance, and web applications, data
may be available as a transient stream that is not permanently accessible (Babcock
et al. 2002). Often, in these applications, the large volume of data or time constraints
prevent storage of the whole stream before processing. Even if data is locally stored,
certain storage media only allow sequential access in a time-efficient manner.

In this paper, we study the fundamental problem of sorting a data stream when
internal storage is limited. As the nature of the problem makes rearranging the data
into a sorted stream impossible, by sorting we mean determining the ordering of the
elements of the stream. In our model, the amount of available internal storage limits
the number of elements of the data stream that can be stored internally. Furthermore,
only elements in internal storage can be compared with each other. Lack of storage
capable of holding the whole data stream implies that sorting must be approximate;
the goal is to produce a permutation that represents the ordering of the elements of
the data stream as faithfully as possible. As in Babcock et al. (2002), we consider
algorithms that make only one pass over the data stream.

To evaluate performance,wemeasure the distortion between the output permutation
and the permutation representing the true ordering of the data. There aremany possible
distortion measures on permutations (Diaconis 1988), among which we consider the
Kendall tau metric and its weighted version, as well as the Chebyshev metric. The
Kendall tau metric can be viewed as the number of mistakes made by the algorithm,
while the Chebyshev metric represents the maximum error in the rank of any element.
Another quality measure considered in the paper is the mutual information between
the true permutation and the output permutation, which reflects the amount of relevant
information present in the output.

We first provide universal bounds on the performance of algorithms with lim-
ited storage, namely an upper bound on mutual information, and lower bounds on
storage to obtain a given distortion between the true permutation and the output. Fur-
ther, we present a simple algorithm that is asymptotically optimal in terms of mutual
information and asymptotically requires a constant factor as much storage as any
algorithm with the same average Kendall tau distortion. For the Chebyshev distortion,
the algorithm is also asymptotically constant-factor-optimal, provided that normalized
distortion, to be defined later, is bounded away from 0. We also consider the case in
which algorithms temporarily have access to more storage in an initial phase. Addi-
tionally, we present an improvement of the aforementioned proposed algorithm for
a special case of storage size. We also consider distortion in the weighted Kendall
metric (Farnoud and Milenkovic 2013), which is capable of penalizing mistakes in
certain positions of permutations more heavily based on the importance of those posi-
tions. Finally, we study a more restricting storage model where only the most recent
elements of the stream are available, in order to model human memory.

The problem of sorting a data stream with limited storage goes back to the work of
Munro and Paterson (1980), where they considered sorting of, and selecting from, data
stored on a read-only tape and showed that for exact sorting of a stream of length n in
p passes, one requires storage of size Θ(n/p). While they allowed making multiple
passes over the data and considered only exact sorting, in this work we study the

123

J Comb Optim (2016) 32:1133–1164 1135

quality of approximate sorting that can be obtained in one pass. Since the work of
Munro and Paterson, many papers have studied problems related to selection in data
streams, such as finding the kth highest value or quantiles, in one or many passes,
e.g., Greenwald and Khanna (2001), Manku et al. (2008), Chakrabarti et al. (2008),
and McGregor and Valiant (2012). The problem of approximate sorting in one pass,
however, to the best of our knowledge, has not been studied.

The rest of this paper is organized as follows. In Sect. 2, we present the formal
problem statement and preliminaries. Section 3 includes universal bounds on the per-
formance of algorithms with limited storage. In Sect. 4, an algorithm for sorting
with limited storage is given and its performance is analyzed. Section 5 discusses the
weighted Kendall distance as a distortion measure. Finally, in Sect. 6, we study the
case where only information about the most recent elements of the stream is available,
which is applicable to human memory.

2 Problem statement and preliminaries

For a positive integer n, we let [n] = {1, . . . , n}. The set of all permutations of [n]
is denoted by Sn . For a permutation π ∈ Sn and distinct i, j ∈ [n], we use i ≺π j
(resp. i �π j) to denote that i appears before j (resp. after j) in π . For example, if
π = (2, 3, 1), we have 2 ≺π 3 and 1 �π 2. The inverse of π is denoted by π−1. The
rank of element i in π is its position in π , that is, π−1 (i).

The data stream is denoted by the sequence s = s1, s2, . . . , sn , of length n, which
may be a stream of real numbers, text files, etc.We assume that a total order< exists on
the elements of s. This total order is represented by a permutation X ∈ Sn as follows:
For distinct i, j ∈ [n], if i ≺X j , i.e., if i appears before j in X , then si < s j . The
goal is to approximate X as closely as possible. While X is not directly accessible in
our setting, the relationship between every two elements si and s j of s can be queried
(or computed) if they are both present in internal storage, and the result of the query
is either si < s j or s j < si (equivalently, i ≺X j or j ≺X i).

Example 1 Suppose s = (98, 15, 23, 13, 2, 89, 60, 118, 104). Then, X is given as
X = (5, 4, 2, 3, 7, 6, 1, 9, 8). For instance, note that s2 < s1 implies that 2 ≺X 1 and
vice versa.

Throughout the paper, our assumption is that X is chosen uniformly and at random
among the permutations of Sn but we only consider deterministic algorithms.

The elements of s are revealed in a streaming fashion, i.e., one by one. If an element
of the stream is not stored internally when revealed, it will not be possible to access it
in the future. The storage limitation is that there are m cells each of which can store
one element of s and thus any algorithm can only access m elements of the sequence
s at any one time. The set of these m cells is termed stream memory. When a new
element si of the stream s arrives, it can only be stored in the stream memory if there
is an empty cell or if the contents of a cell is discarded; otherwise, si is ignored. To
make a query regarding the relative order of si and s j with respect to X , both si and s j
should be stored in the stream memory. We do not impose any other type of storage
limitation. For example, there is no restriction on the number of integer values that

123

1136 J Comb Optim (2016) 32:1133–1164

an algorithm can store and access. In particular, one can store n integers but not the n
elements of the data stream. This assumption is for simplifying the analysis and is also
valid when each element of s is much larger than other types of data that an algorithm
may require. To avoid trivial cases, we assume n,m ≥ 2.

The output of the algorithms considered here is a permutation, denoted Y . To
measure performance, we evaluate how “close” Y is to X . Closeness between two
permutations can be quantified in a variety of ways. We use the Kendall tau and
Chebyshevmetrics, defined below, aswell as themutual information between X andY .

The Kendall tau distance between two permutations π, σ ∈ Sn is the number of
pairs of distinct elements i and j such that i ≺π j and j ≺σ i , or equivalently, the
number of adjacent transpositions needed to take π to σ . This distance is denoted as
dK (π, σ). The Chebyshev distance between π and σ , denoted dC (π, σ), is defined as

max
i∈[n]

∣
∣
∣π

−1 (i) − σ−1 (i)
∣
∣
∣ .

In other words, the Chebyshev distance is the maximum difference in the rank of any
element in the two permutations.

Example 2 Consider s and X given in Example 1 and suppose that the output of
a certain algorithm is Y = (5, 2, 4, 3, 7, 9, 1, 6, 8). This output corresponds to the
approximate sorting s′ of s,

s′ = (2, 15, 13, 23, 60, 104, 98, 89, 118) .

Note that s′ is given for demonstration only; the output of the algorithm is Y and s′ is
not available. For the Kendall tau and Chebyshev distortions, we have dK (X,Y) = 4
and dC (X,Y) = 2.

Wealso discuss theweightedKendall distance, defined inSect. 5,which is a distance
measure that assigns different weights to different positions in permutations. This
distance is for example useful when one wants to penalize errors at the top positions
more heavily than those at the bottom.

For two functions fn and gn of n, the notation fn ∼ gn is used to denote
limn→∞ fn/gn = 1. Furthermore, we use lg and ln as shorthands for log2 and loge,
respectively.

3 Universal bounds

In this section, we present bounds on the performance of any algorithm that can only
storem elements of the sequence s. To derive these bounds, we use the fact that tomake
a query for comparing two elements si and s j , both need to be present in the stream
memory and so the amount of information that can be obtained via queries is limited
because of the limitation on storage. As mentioned earlier, X is a random element
of Sn but only deterministic algorithms are considered. We first present bounds on
the mutual information between X and the output permutation Y and then consider
distortion under the Kendall tau and Chebyshev metrics.

123

J Comb Optim (2016) 32:1133–1164 1137

We use H(X) and I (X; Y) to refer to the entropy of X and the mutual information
between X and Y , respectively. For these functions, logarithms are base 2. Note that
as X is a random element of Sn , we have H(X) = lg n!.
Theorem 1 For any algorithm with stream memory of size m, we have

I (X; Y) ≤ n lgm − m lg e + O(lgm).

Furthermore, I (X; Y ∗) /H (X) ∼ lgm/ lg n for m, n → ∞, where Y ∗ is the output
of an algorithm that maximizes the mutual information between X and Y .

Proof Let Z be the set of responses provided to the comparison queries made by
the algorithm. Since the algorithm can only have access to X through Z , we have
X → Z → Y , i.e., the random variables X , Z , Y form a Markov chain in that order
(Cover and Thomas 2006), and equivalently Y → Z → X . By the data processing
inequality (Cover and Thomas 2006, Theorem 2.8.1), we find I (Y ; X) ≤ I (Y ; Z).
Furthermore, I (Y ; Z) ≤ H (Z).

We now show that H (Z) ≤ lgm! + (n −m) lgm. The first m elements of s can be
fully compared and so m! cases arise from their ordering. Let Z ′

0 be an integer in [m!]
identifying the permutation representing the ordering of the first m elements. Each of
the next n−m elements can at most be compared withm−1 elements already present
in the stream memory. These m − 1 elements define m intervals, into one of which
the new element falls. For i ∈ {m + 1, . . . , n}, let Z ′

i be an integer in [m] identifying
the interval in which the i th element of the stream falls. Given the algorithm, Z is a
deterministic function of

(

Z ′
0, Z

′
m+1, Z

′
m+2, . . . , Z

′
n

)

and thus

H (Z) ≤ H
(

Z ′
0, Z

′
m+1, Z

′
m+2, . . . , Z

′
n

)

≤ H
(

Z ′
0

)+
n
∑

i=m+1

H
(

Z ′
i

)

≤ lgm! + (n − m) lgm.

It follows that I (X; Y) ≤ H (Z) ≤ lgm!+ (n−m) lgm. The first theorem statement
then follows from the Stirling approximation: For a positive integer k, we have lg k!
= k lg k − k lg e + O (lg k).

Since I (X; Y) ≤ lgm! + (n − m) lgm holds for Y = Y ∗, we have
I (X; Y ∗)
H (X)

≤ n lgm + O(m)

n lg n + O(n)
= lgm

lg n
(1 + o (1)) , (1)

where we have used the fact that m
n lgm = O(1/ lg n) = o(1). In Sect. 4, we present

an algorithm that produces an output Y1 such that

I (X; Y1)
H (X)

≥ lgm

lg n
(1 + o (1)) , m, n → ∞.

Since I (X; Y ∗) ≥ I (X; Y1), we have
I (X; Y ∗)
H (X)

≥ lgm

lg n
(1 + o (1)) , m, n → ∞. (2)

123

1138 J Comb Optim (2016) 32:1133–1164

(a) (b)
Fig. 1 The inverse of the function y = xex (a) is called the LambertW function (b). The function y = xex

is decreasing in (−∞,−1) and increasing in (−1,∞); these regions are indicated with different line styles.
Each of these regions gives rise to one branch of the inverse function in (b), namely W−1 and W0

The second statement of the theorem follows from (1) and (2). �

In particular, ifm = nβ +O(1) for a constant β, then a β fraction of the information

of X can be recovered by an algorithm with stream memory m.
Next, we use the rate-distortion theory to find lower bounds on storage for a

specific value of the average Kendall tau distortion between X and Y , defined as
E[dK (X,Y)]. We use δ to denote the normalized version of this distortion, that is,
δ = E[dK (X,Y)]/n. This choice leads to simpler expressions. Note that since dK
can be of the order of n2, δ can take on values in the range [0,∞).

The following theorem applies to any algorithmwith streammemorym. We useW0
and W−1 to respectively denote the principal and the lower branches of the Lambert
W function. The LambertW function (Corless et al. 1996) is defined as the inverse of
y = xex . See Fig. 1 for plots of these functions and a brief note on the branches ofW .

Theorem 2 Let μ = m
n and δ = E[dK (X,Y)]

n . Suppose ε is a positive constant. For any
algorithm with stream memory m and δ > ε, we have

μ ≥ −W0

(

− δδ

e(1 + δ)1+δ

)(

1 + O

(
lg n

n

))

, (3)

and

μ ≥ 1

e2δ

(

1 + O

(
lg n

n

)

+ O

(
1

δ

))

. (4)

Proof Since we only consider deterministic algorithms, the number M of outputs of
a given algorithm is bounded from above by m!mn−m . This statement can be proven
in a similar manner to the upper bound on H (Z) in Theorem 1.

Let A = 1
n lg

M
n! . We have lgM ≤ n lgm − m lg e + O(lgm) and so

A ≤ 1
n (n lgm − m lg e − n lg n + n lg e + O(lg n))

= lg
(

μe1−μ
)+ O

(

n−1 lg n
)

.

123

J Comb Optim (2016) 32:1133–1164 1139

The parameter M can be viewed as the size of a rate-distortion code. Hence, from
Farnoud et al. (2014a, Theorem 5), and Farnoud et al. (2014b), we have the following
relationship between the average distortion E [dK (X,Y)] and M , expressed in terms
of δ and A,

A ≥ lg
δδ

(1 + δ)1+δ
+ O

(
lg n

n

)

.

From this and the fact that A ≤ lg
(

μe1−μ
)+ O

(

n−1 lg n
)

, we obtain

μe1−μ ≥ δδ

(1 + δ)1+δ
eO
(

n−1 lg n
)

.

Since for all real x , we have ex ≥ 1 + x , we find

μe1−μ ≥ δδ

(1 + δ)1+δ

(

1 + O

(
lg n

n

))

,

or equivalently,

− μe−μ ≤ −δδ

e(1 + δ)1+δ

(

1 + O

(
lg n

n

))

. (5)

Hence

μ ≥ −W0

(−δδ

e(1 + δ)1+δ

(

1 + O

(
lg n

n

)))

. (6)

For convenience, let g (δ) = δδ

e(1+δ)1+δ . By taking derivatives, one can show that the
function W0 is concave. Hence,

W0

(

−g(δ) + g(δ)O
(

n−1 lg n
))

≤ W0(−g(δ)) + W ′
0(−g(δ))g(δ)O

(

n−1 lg n
)

= W0(−g(δ)) + W0(−g(δ))g(δ)O
(

n−1 lg n
)

g(δ) (1 + W0(−g(δ)))

= W0(−g(δ))

(

1 + O
(

n−1 lg n
)

1 + W0(−g(δ))

)

= W0(−g(δ))
(

1 + O
(

n−1 lg n
))

.

Note that for δ ≥ 0, the expression−g(δ) is strictly increasing and−g(δ) ∈ [−1/e, 0).
Since δ > ε > 0, we have −g (δ) > −g (ε) > −1/e. Furthermore, W0 (x) is strictly
increasing for x ≥ −1/e and so W0 (−g (δ)) > W0 (−g (ε)) > −1. Hence for some
positive constant ε′, we have W0 (−g (δ)) ≥ −1 + ε′, from which the last step of the
above derivation follows. We finally have,

μ ≥ −W0

(

− δδ

e(1 + δ)1+δ

)(

1 + O

(
lg n

n

))

. (7)

123

1140 J Comb Optim (2016) 32:1133–1164

Fig. 2 The lower bound (3) on the memory requirement of any algorithm with average Kendall distortion
δ and the lower bound (4), which becomes more accurate as δ becomes larger. Both bounds are plotted for

n → ∞, so we have ignored the term O
(
lg n
n

)

. For (4), we have also ignored the term O
(
1
δ

)

To prove the second statement, note that by concavity of W0 and the facts that
W0(0) = 0 and W ′

0(0) = 1, we have

W0

(

− δδ

e(1 + δ)1+δ

)

≤ − δδ

e(1 + δ)1+δ

≤ − 1

e2(1 + δ)

= −1 + O(1/δ)

e2δ
. (8)

The second statement of the theorem then follows from (7) and (8). �

The inequalities (3) and (4) of Theorem 2 are illustrated in Fig. 2. In this figure,

as well as all following figures in the paper, we ignored the asymptotically negligible
terms. It is worth noting that the approximation is close to the lower bound even for
moderate values of δ.

Finally, we consider the Chebyshev distortion between X and Y . The normalized
Chebyshev distortion is χ = E [dC (X,Y)] /n. We only consider the case of χ ≤ 1/2
which is more important as it represents small distortions.

Theorem 3 Let μ = m
n and χ = E[dC (X,Y)]

n . Suppose 2/n ≤ χ ≤ 1/2. For any
algorithm with stream memory m, we have

μ ≥ −W0

(

− (e/2)2χ

2χn

)(

1 + O
(

n−1 lg n
))

.

Proof Let M be defined as in the proof of Theorem 2 and let R = 1
n lgM . Since

lgM ≤ n lgm − m lg e + O(lgm), we have R ≤ lgm − m
n lg e + O(n−1 lgm).

123

J Comb Optim (2016) 32:1133–1164 1141

Fig. 3 The lower bound on the memory requirement of any algorithm with average Chebyshev distortion
χ , for n = 100 and n = 1000. See Theorem 3

From Farnoud et al. (2014a, Theorem16), and Farnoud et al. (2014b), we find R ≥
lg 1

2χ + 2χ lg e
2 + O(n−1 lg n) for χ ≤ 1/2. Hence,

lg
1

2χ
+ 2χ lg

e

2
≤ lgm − m

n
lg e + O(n−1 lg n)

implying that μe−μ ≥ (e/2)2χ

2χn

(

1 + O
(

n−1 lg n
))

, or equivalently,

μ ≥ −W0

(

− (e/2)2χ

2χn

(

1 + O
(

n−1 lg n
)))

.

Since χ ≤ 1/2, we have (e/2)2χ ≤ e/2 and since χ ≥ 2/n, we have 2χn ≥ 4. So

− (e/2)2χ

2χn ≥ − e
8 > − 1

e . Hence, W0

(

− (e/2)2χ

2χn

)

is bounded away from -1. We have

W0

(

− (e/2)2χ

2χn

(

1 + O
(

n−1 lg n
)))

(a)≤ W0

(

− (e/2)2χ

2χn

)

+ W ′
0

(

− (e/2)2χ

2χn

)
(e/2)2χO

(

n−1 lg n
)

2χn

= W0

(

− (e/2)2χ

2χn

)

+ W0

(

− (e/2)2χ

2χn

)
O
(

n−1 lg n
)

1 + W0

(

− (e/2)2χ
2χn

)

(b)= W0

(

− (e/2)2χ

2χn

)(

1 + O
(

n−1 lg n
))

,

where (a) and (b) follow from the concavity ofW0 and the fact that 1+W0

(

− (e/2)2χ

2χn

)

is bounded away from 0, respectively. �

In Fig. 3, we plot the lower bound given in Theorem 3, ignoring the term

(

1 + O
(

n−1 lg n
))

. Note the dependance of the bound on the value of n.

123

1142 J Comb Optim (2016) 32:1133–1164

4 Algorithm for limited-storage approximate sorting

We present the following simple algorithm for approximately sorting a stream using
storage of size m and then present results regarding its performance. Let c1, . . . , cm
denote the m memory cells capable of storing elements of the stream. Recall that
si < s j if i appears before j in X , i.e., i ≺X j .

Algorithm 1

1. Store the first m − 1 elements of s in memory cells c1, . . . , cm−1.
2. Find permutation y of {1, . . . ,m − 1} such that sy1 < sy2 < · · · < sym−1 .
3. Let Y1 ← y.
4. For each new element si , i = m,m + 1, . . . , n, of the stream:

(a) Store si in cm .
(b) If there exists j such that sy j−1 < si < sy j , insert i immediately before y j in

Y1.
(c) If si < s j for all j ∈ [m − 1], insert i immediately before y1 in Y1.
(d) If si > s j for all j ∈ [m − 1], append i to the end of Y1.

In this algorithm, the first m − 1 elements, namely, s1, . . . , sm−1, are stored in the
memory for the duration of the algorithm and every new element is compared with
these. An element that is stored in memory, for the purpose that new elements can be
compared with it, is called a pivot.

Example 3 Same as Example 1, suppose

s = (98, 15, 23, 13, 2, 89, 60, 118, 104) ,

X = (5, 4, 2, 3, 7, 6, 1, 9, 8).

Furthermore, suppose m = 3. After step 3 of Algorithm 1, we have y = Y1 = (2, 1).
For i = 3, Y1 is updated to (2, 3, 1), where the indices of the pivots are shown in bold.
For i = 4 and i = 5, Y1 is respectively updated to (4, 2, 3, 1) and (4, 5, 2, 3, 1). The
final output is Y1 = (4, 5, 2, 3, 6, 7, 1, 8, 9), which corresponds to the approximate
sorting s′ of s,

s′ = (13, 2, 15, 23, 89, 60, 98, 118, 104) .

For the Kendall tau and Chebyshev distortions, we have dK (X,Y1) = 3 and
dC (X,Y1) = 1.

In Algorithm 1, the index set of pivots is {1, 2, . . . ,m − 1} and they are in correct
order in Y1. However, indices of elements between the pivots, and between the pivots
and the boundaries, are sorted in the natural increasing order which may differ from
their order in X , e.g., the subsequence 3, 6, 7 of Y1 in the preceding example. Let
r1, . . . , rm−1 be an increasing sequence that denotes the positions of the indices of
the pivots in X (or equivalently in Y1). Furthermore, let r0 = 0 and rm = n + 1.
In Example 3, we have r0 = 0, r1 = 3, r2 = 7, and r3 = 10. For j ∈ [m], the
elements of Y1 between positions r j−1 and r j can have any order in X . Additionally,
all possibilities are equally probable. Therefore, we have the following lemma.

123

J Comb Optim (2016) 32:1133–1164 1143

Lemma 1 Given Y1, the number of possible cases for X is given by

m
∏

j=1

(

r j − r j−1 − 1
)! ,

where all cases are equally likely.

In Theorem 4 we show that Algorithm 1 is asymptotically optimal with respect to
mutual information. First however, we explain why this result is intuitively expected.
The random choice of the m − 1 pivots in Algorithm 1 divides the sorted version of
the sequence s into m segments with lengths r j − r j−1 − 1, j ∈ [m]. The expected
length of each of these segments is approximately n/m. If the actual lengths of the
segments are close to this expected value, from the preceding lemma, the number of
possible cases for X given Y1 is estimated as

(n
m !)m � (n

m

)n and so I (X; Y1) =
H (X) − H (X |Y1) � n lgm. We thus may expect that I (X;Y1)

H(X)
� lgm

lg n , which is
optimal.

Theorem 4 Algorithm 1 is asymptotically optimal for m, n → ∞, with respect to
mutual information.

Proof Since I (X; Y1) = H(X) − H(X |Y1) and H(X) = lg n!, to find I (X; Y1), it
suffices to find H(X |Y1). From Lemma 1, we have

H(X |Y1) =
∑

z∈Sn
P(Y1 = z)H(X |Y1 = z)

=
(

n

m − 1

)−1 ∑

r0<···<rm

m
∑

j=1

lg
(

r j − r j−1 − 1
)

.

For given values of r0, . . . , rm , the set [n] is divided into m blocks with lengths
r j − r j−1 − 1. To compute the above sum, we count how many times a block of size
k occurs for all possible values of r0, . . . , rm . The number of times a block of length
k appears starting at position 1 equals

(n−k−1
m−2

)

since we have r1 = k + 1 but must
choose the values of r2, . . . , rm−1 among the n − (k + 1) possibilities. The number
of times a block of size k ends at position n is the same. A similar argument shows
that the number of times a block of length k starts at position i and ends at position
i + k − 1, for each i ∈ {2, . . . , n − k}, is (n−k−2

m−3

)

. Thus, the total number of blocks of

size k is 2
(n−k−1

m−2

)+ (n − k − 1)
(n−k−2

m−3

) = m
(n−k−1

m−2

)

. Hence,

H(X |Y1) =
(

n

m − 1

)−1

m
n−m+1
∑

k=2

(
n − k − 1

m − 2

)

lg k!. (9)

From Lemma 6 of the appendix, we have

n−m+1
∑

k=1

(
n − k − 1

m − 2

)

k lg k ≤
(
n

m

)(

lg
n

m
+ O(1)

)

. (10)

123

1144 J Comb Optim (2016) 32:1133–1164

From (9), (10), and the fact that lg k! < k lg k, we obtain

H (X |Y1) ≤ (n − m + 1)
(

lg
n

m
+ O(1)

)

= n lg
n

m
+ O(n)

and so I (X; Y1) ≥ lg n! − n lg n
m + O(n) = n lgm + O(n). Thus I (X;Y1)

H(X)

≥ lgm
lg n (1 + o (1)) for m, n → ∞. Recall from the proof of Theorem 1 that

I (X;Y)
H(X)

≤ lgm
lg n (1 + o (1)) for the output Y of any algorithm. Therefore,

I (X; Y1)
H (X)

= lgm

lg n
(1 + o (1)) ,

which is optimal. �

The next theorem and its corollary prove the optimality of Algorithm 1 with respect

to theKendall tau distortion, up to a constant factor. Beforemoving to the formal proof,
we state an approximate analysis of the Kendall tau distortion of the algorithm. As
mentioned earlier, the random choice of pivots in the algorithm creates segments
with expected length approximately equal to n/m. The average Kendall tau distortion
induced by each segment is then about 1

2

(n/m
2

) � (n/m)2 /4. Since there are m seg-
ments, we may expect δ � 1

n ·m · (n/m)2 /4 = 1/ (4μ) or equivalently μ � 1/ (4δ).
Recall from Theorem 2 that if δ is bounded away from zero, then for any algorithm,
μ = Ω (1/δ). Hence, this discussion points to the optimality of Algorithm 1. As
we see in the following theorem however, this analysis is somewhat optimistic as it
assumes the best case, namely, the case in which all segments have equal lengths.
Nevertheless, this rough approximation correctly predicts the optimality of Algorithm
1 up to a constant factor.

Theorem 5 Suppose Algorithm 1 has stream memory m and produces an output with
average Kendall tau distortion dK (X,Y1). We have

E [dK (X,Y1)] = 1

m + 1

(
n − m + 1

2

)

.

Denoting m = μ1n and δn = E [dK (X,Y1)], it follows that

μ1 ≤
(

1 + δ −√δ(δ + 2)
)

(1 + O(1/n)),

and, if μ1 is bounded away from 1, that

δ ≤ (1 − μ1)
2

2μ1
(1 + O(1/n)). (11)

Proof Without loss of generality, assume 1 ≺X · · · ≺X m − 1. Consider distinct
i, j ∈ {m, . . . , n}, with i < j . The pair i, j will have incorrect order in Y1, if and
only if j ≺X i and there is no p ∈ {1, . . . ,m − 1} such that j ≺X p ≺X i (in

123

J Comb Optim (2016) 32:1133–1164 1145

Fig. 4 Comparison of the lower bound on storage requirement of any algorithm and the storage required
by Algorithm 1 for a given average Kendall tau distortion

other words, there is no pivot sp such that s j < sp < si). Since X is random, it
is straightforward to see that the probability of this event is 1/(m + 1). There are
(n−m+1

2

)

possible choices for the pair i, j . By the linearity of expectation, we find

E [dK (X,Y1)] = 1
m+1

(n−m+1
2

)

.

We have δn = E [dK (X,Y1)] = 1
μ1n+1

(n−μ1n+1
2

)

and thus δn ≤ (n−μ1n+1)2

2μ1n
. From

this, (11) follows and also

μ1 ≤ 1 + δ + 1

n
−√δ(δ + 2 + 2/n)

=
(

1 + δ −√δ(δ + 2)
)

(1 + O(1/n)).

�

Corollary 1 Algorithm 1 asymptotically requires at most a constant factor as much
storage as an optimal algorithm with the same average Kendall tau distortion.

Proof From the upper bound on μ1 given in the preceding theorem, we have μ1
≤ 1/(2δ) (1 + O(1/δ)) (1 + O(1/n)).

Let μ∗n be the smallest amount of stream memory of any algorithm with average
Kendall tau distortion δn. From (4), we have

μ1

μ∗ ≤ 1/(2δ)

1/
(

e2δ
) (1 + O(1/δ)) (1 + O(lg n/n)) .

Thus there is a constant c such that for δ, n ≥ c, μ1/μ
∗ is bounded.

On the other hand, if δ < c, from (3) and using the fact thatμ∗ is a decreasing func-
tion of δ, we have μ∗ ≥ −W0

(−cce−1(1 + c)−1−c
)

(1 + O(lg n/n)) . Furthermore
μ1 ≤ 1. Hence, if δ < c, again μ1/μ

∗ is bounded. �

In Fig. 4, we compare the performance of Algorithm 1 with the lower bound on

storage for any algorithm, given in Theorem 2.

123

1146 J Comb Optim (2016) 32:1133–1164

The next theorem and corollary are concerned with the average Chebyshev distor-
tion of Algorithm 1.

Theorem 6 Suppose Algorithm 1 hasmemorym and produces an output with average
Chebyshev distortion χn. Furthermore, suppose that χ ≤ 1/2 and m ≥ 2. We have

χ ≤ 1 + lnm

m
,

m ≤ − 1

χ
W−1

(

−χ

e

)

.

Proof Consider an element i in Y1 that is between positions r j−1 and r j . We
know that the position of this element in X is also between r j−1 and r j . Thus,∣
∣
∣X−1(i) − Y−1

1 (i)
∣
∣
∣ ≤ r j − r j−1 − 1 and so

dC (X,Y1) ≤ max
j

(

r j − r j−1 − 1
)

.

Suppose a stick of length n is randomly broken at m − 1 points. Let the length of
the longest piece among the m pieces be denoted by S. From Holst (1980), we have
E[S] = nE[S′]/m, where S′ is the largest random variable among m iid exponential
random variables with mean 1. We have E[S′] =∑m

i=1 1/ i ≤ lnm + γe + 1
2m , where

the inequality follows from Chen and Qi (2008) and γe is Euler’s constant. Since the
positions of the pivots in Algorithm 1 are random, with a coupling argument one can
show that the expected length of the longest segment is not more than E[S]. That is,
E
[

max j
(

r j − r j−1 − 1
)] ≤ E [S]. Hence,

E[dC (X,Y1)] = χn ≤ n

m

(

lnm + γe + 1

2m

)

.

Since m ≥ 2 we have γe + 1
2m ≤ 1, and thus χ ≤ ln(me)

m . This in turn implies
that −mχe−mχ ≤ −χ

e , from which it follows that −(1/χ)W0 (−χ/e) ≤ m ≤
−(1/χ)W−1 (−χ/e), which completes the proof. Note that for χ ≤ 1, we have
−(1/χ)W0 (−χ/e) ≤ 1 and hence the inequality −(1/χ)W0 (−χ/e) ≤ m does not
give us any useful information. �

Corollary 2 If χ is bounded away from zero, Algorithm 1 asymptotically requires
at most a constant factor as much memory as an optimal algorithm with the same
average Chebyshev distortion.

Proof Let μ1 denote m/n for Algorithm 1 and μ∗ denote the smallest amount of
storage of any algorithm with Chebyshev distortion χn. From the preceding theorem
and Theorem 3,

μ1

μ∗ ≤ − 1
χnW−1

(−χ
e

)

−W0

(

− (e/2)2χ
2χn

)

(

1 + O

(
lg n

n

))

∼ − 1
χnW−1

(−χ
e

)

(e/2)2χ
2χn

123

J Comb Optim (2016) 32:1133–1164 1147

Fig. 5 The lower bound on the memory requirement of any algorithm with average Chebyshev distortion
χ compared with the storage that Algorithm 1 requires for n = 500

∼ −2W−1
(−χ

e

)

(e/2)2χ
. (12)

Suppose χ is bounded away from 0. It follows that −χ/e is also bounded away from
0. This in turn implies that −W−1(−χ/e) is bounded and so is the right side of (12).

�

Figure 5 presents an illustration of the storage requirement of Algorithm 1 and

the lower bound on storage of any algorithm (given in Theorem 3) versus average
Chebyshev distortion.

In what follows we provide two variants of Algorithm 1. The first deals with a
relaxation of the storage limitation and the second provides improved performance
for m = 2. The main modification in both variants is that the set of pivots is no longer
the same set of elements throughout the algorithm, but it changes during its execution.

4.1 Using more than m storage units in initial phase

In this subsection, we consider a variant of Algorithm 1, where the storage restriction
is relaxed to allow larger storage in the initial phase of the algorithm. The idea is
that increasing storage temporarily in the beginning may enable one to choose better
pivots from a set that has more thanm elements. This approach bears a resemblance to
the median-of-three method for choosing pivots in Quicksort (Sedgewick and Wayne
2011), where instead of randomly choosing the pivot element, one chooses the median
of three randomly chosen elements, resulting in better partitioning of the elements.
Here,we studywhether a similar performance improvement is observedwith respect to
the average Kendall tau distortion, when choosem pivots from a larger set of elements.

Since applications are rarely executed in isolation on devoted hardware, it is ben-
eficial to consider cases in which the storage requirement can vary during different
stages of execution. For example, as is the case in our setting, an application may
utilize more storage in an initial phase and then a part of this space is freed up so that

123

1148 J Comb Optim (2016) 32:1133–1164

it can be used by other applications running on the system. In general it is useful to
identify which stages of an algorithm may benefit from extra resources and how these
resources, if available, can improve the performance. In Algorithm 1, since pivots play
a crucial role, the initial stage of the algorithm can be modified to benefit from more
storage. After this stage of the algorithm ends, this extra storage is released to the
system to be used by other applications.

Suppose that the algorithm can store � elements, where � > m for the duration of
receiving the first � elements.After receiving the first � elements, the algorithmchooses
m−1pivots among the �possible choices, keeps them inmemory, and releases the extra
� −m storage units. From this point, the algorithm proceeds similarly to Algorithm 1
and uses only stream memory of size m.

Ideally we want the pivots to be distributed as uniformly as possible in the sorted
version of s. If this is the case, we will have E [dK (X,Y)] � m

2

(n/m
2

) � n2
4m , assuming

m is small with respect to n. This is an improvement of a factor of 2 over the distortion
given by Theorem 5, E [dK (X,Y1)] = 1

m+1

(n−m+1
2

) � n2
2m . To get pivots that are

uniformly distributed, it appears that one should choose pivots that are uniformly
distributed among the initial � elements. In what follows, we show that this intuition is
correct and that the reduction by a factor of 2 of the average distortion can be obtained.

Let A� (v0, . . . , vm) be the probability that a certain pair of elements among
s�+1, . . . , sn are placed in the wrong order in the final output given that among
the first � elements, the pivots are in ranks (vi)

m
i=0, where we let v0 = 0 and

vm = � + 1 for convenience. Using an argument similar to that of the proof of
E [dK (X,Y1)] = 1

m+1

(n−m+1
2

)

of Theorem 5, we obtain

A� (v0, . . . , vm) =
∑m

i=1

(
vi−vi−1+1

2

)

(� + 1)(� + 2)
.

We now find the set of values of (vi)
m
i=0 that minimize A� (v0, . . . , vm). For α, β ∈

R, note that

(
α

2

)

+
(

β

2

)

>

(
α + 1

2

)

+
(

β − 1

2

)

if and only if β > α + 1. Furthermore, note that
∑m

i=1 (vi − vi−1 + 1) = � +m + 1.
So to minimize A� (v0, . . . , vm) we find the values of vi such that

∣
∣(vi − vi−1 + 1) − (v j − v j−1 + 1

)∣
∣ ≤ 1.

Hence, the pivots should be chosen among the first � elements as uniformly as possible.
To do so, put ρ = � + m + 1 mod m and let

vi − vi−1 + 1 =
⌊

� + m + 1

m

⌋

+ 1, for 1 ≤ i ≤ ρ

vi − vi−1 + 1 =
⌊

� + m + 1

m

⌋

, for ρ + 1 ≤ i ≤ m.

123

J Comb Optim (2016) 32:1133–1164 1149

Furthermore, let A∗
�(m) denote the the value of A� with the aforementioned values for

vi . Then,

A∗
�(m) =

ρ
(
⌊

�+m+1
m

⌋

+1

2

)+ (m − ρ)
(
⌊

�+m+1
m

⌋

2

)

(� + 1)(� + 2)

= (� + 1 + ρ) (� + 1 + m − ρ)

2m(� + 1)(� + 2)
= 1

2m

(

1 + O
(m

�

))

and so the average Kendall tau distortion is

1

2m

(
n − �

2

)(

1 + O
(m

�

))

.

In particular, supposem, �, n → ∞ but � is much larger thanm andmuch smaller than
n, i.e.m = o(�) and � = o(n). Then the average Kendall tau distortion is n2

4m (1+o(1)).
As expected, this is a reduction by a factor of 2 compared to the distortion of Algorithm
1, n2

2m (1 + o(1)), given by Theorem 5.

4.2 Updating the pivot for m = 2

In this subsection, we study the possibility of improving the performance of Algorithm
1 by modifying the pivots after they are chosen, based on their rank among a certain
number of received elements. For simplicity, we limit ourselves to the special case of
m = 2, that is, there is a single pivot, and we focus solely on the Kendall tau distortion.
This relatively simple case illustrates the possibility of improving the performance by
updating the pivots, as we show below. We expect the same updating strategy to be
also useful for m > 2. However, a rigorous study of these cases is considerably more
complex and postponed to future work.

First, we note that for m = 2 according from (5), we have

2

n
e−2/n ≥ 1

e(1 + 1/δ)δ(1 + δ)
(1 + o(1)).

Since e−2/n ≤ 1 and (1 + 1/δ)δ ≤ (e1/δ)δ = e, we find

2

n
≥ 1

e(1 + δ)
(1 + o(1)),

implying the lower bound

δ ≥ n

2e2
(1 + o(1)) ≈ 0.135

n

2
(1 + o(1))

on δ. On the other hand, according to Theorem 5, the normalized distortion guaranteed
by Algorithm 1 is

E [dK (X,Y1)]

n
= 1

3n

(
n − 1

2

)

= 1

3

n

2
+ O(1).

123

1150 J Comb Optim (2016) 32:1133–1164

We now consider the scenario in which we change the pivot only once and the
main concern here is how to decide whether the pivot should be changed. We start by
executing Algorithm 1 so the pivot is s1. Suppose that t items are received and a of
them are smaller than the pivot s1 while b of them are larger than s1 (t = a + b + 1).
Without loss of generality, assume that a > b. Intuitively, if a is much larger than b,
it may be better to change the pivot to an element smaller than s1. In what follows,
we investigate circumstances under which it is indeed helpful to change the pivot.
We do this by comparing between keeping the same pivot and changing it to the last
received element that is smaller than s1. This choice of the alternative pivot, simplifies
our derivation. We state and prove our result to this problem in the following lemma.

Lemma 2 Assume that after receiving t = a + b+ 1 elements, the pivot s1 is in rank
a + 1 where a > b. If t = o(n), then replacing s1 with the last received element
smaller than s1 improves the expected distortion if and only if a > 3b + 1.

Proof After receiving a + b + 1 elements, let A, B, and C be the following sets:

A = {s j : j ≤ a + b + 1
}

,

C = {s j : a + b + 2 ≤ j ≤ n
}

.

First, suppose that we keep the current pivot s1, so the output is the permutation
output Y1 of Algorithm 1. We calculate the probability that two elements of the stream
are not in the correct order in Y1. For two elements u and v of the stream and two
permutationsπ and σ , let Du,v (π, σ) be the event thatπ and σ disagree on the relative
ranks of u and v, i.e., the event that (u ≺σ v & v ≺π u) or (u ≺π v & v ≺σ u). For
u, v ∈ C, u �= v, assuming v arrives after u, we have

P
(

Du,v (X,Y1)
) = P (v < u < s1) + P (s1 < v < u) =

(a+2
2

)+ (b+2
2

)

2
(a+b+3

2

) ·

Hence, the expected distortion is

E[dK (X,Y1)] = n2

2
·
(a+2

2

)+ (b+2
2

)

2
(a+b+3

2

) + o
(

n2
)

,

as |A|2 and |A| |C | are o(n2).
Now, let si be the last received element that is smaller than s1. Note that among

the first a + b + 1 elements of s, si is ranked immediately before s1. Now, suppose
that we change the pivot to si after receiving the first a + b+ 1 elements. Let the final
result of the algorithm be denoted by Y ′

1 in this case. For u, v ∈ C, u �= v, assuming
v arrives after u, we have

P
(

Du,v

(

X,Y ′
1

)) = P (v < u < si) + P (si < v < u)

= 1
a

∑a
j=1

(j+1
2)+(a+b+3− j

2)
2(a+b+3

2)

= (a+2
3)+(a+b+3

3)−(b+3
3)

2a(a+b+3
2)

,

123

J Comb Optim (2016) 32:1133–1164 1151

where the second line is the result of conditioning on the rank of si among the a
elements that are smaller than s1. Thus the expected distortion is

E[dK (X,Y ′
1)] = n2

2
·
(a+2

3

)+ (a+b+3
3

)− (b+3
3

)

2a
(a+b+3

2

) + o
(

n2
)

.

Hence, it is better to change the pivot iff

(
a + 2

3

)

+
(
a + b + 3

3

)

−
(
b + 3

3

)

> a

(
a + 2

2

)

+ a

(
b + 2

2

)

⇐⇒ a > 3b + 1.

�

Suppose that after receiving the t = a + b+ 1st element, we update the pivot to si ,

defined above, if a > 3b + 1. Let the output of the algorithm in this case be denoted
by Y ′′

1 . The distortion of this modified algorithm is calculated in the next theorem.

Theorem 7 If t = o(n) and is unbounded then the expected distortion δ′ of Y ′′
1

becomes

181

576

n

2
+ o (n) .

Proof Since t = o (n), the dominant term in the expected distortion is produced by
u, v ∈ C , u �= v, for which from the proof of the previous lemma we have

P
(

Du,v

(

X,Y ′′
1

)) = 1

t

�(3t−2)/4�
∑

a=0

(a+2
2

)+ (t−a+1
2

)

2
(t+2

2

)

+ 1

t

t−1
∑

a=�(3t−2)/4�+1

(a+2
3

)+ (t+2
3

)− (t−a+2
3

)

2a
(t+2

2

) . (13)

Using this equality, in the appendix, we show that

P
(

Du,v

(

X,Y ′′
1

)) = 181

576
+ o(1). (14)

The expected distortion δ′ then becomes

1

n

(
181

576

n2

2
+ o

(

n2
))

.

Note that the coefficient 181576 ≈ 0.3142 should be comparedwith 1
3 ≈ 0.3333, obtained

from Theorem 5. �

5 Weighted distance

In many applications, such as evaluating search engine performance and preference
aggregations, different positions in rankings are of different significance. In particular,

123

1152 J Comb Optim (2016) 32:1133–1164

often errors in the top positions in rankings should be penalizedmore heavily than those
in the bottom positions. The metrics considered in the previous sections, as well as all
conventional distance (distortion) metrics on permutations, disregard the importance
of positions in which errors occur. In this section, we use a weighted distance as a
measure of performance that takes into account the positions of errors.

To address the aforementioned shortcoming of conventional distances, several alter-
native distance measures have been recently proposed in the literature including those
in Shieh (1998), Yilmaz et al. (2008), Carterette (2009), Kumar and Vassilvitskii
(2010), and Farnoud and Milenkovic (2013). Here we use the method proposed by
Farnoud andMilenkovic (2013) that introduces the weighted Kendall distance with an
axiomatic approach based on the original set of distance axioms put forth by Kemeny
(1959).

A transposition (i j) is a permutation that is obtained from the identity by swapping
the positions of i and j . For i ∈ [n−1], (i i+1) is called an adjacent transposition. For
a permutation π , π (i j) is the permutation obtained from π by swapping the elements
of π that are in positions i and j . To define the weighted Kendall distance, we need a
nonnegative functionw that assigns weightwi to each adjacent transposition (i i + 1).
The weight of a sequence (i1 i1 + 1) , (i2 i2 + 1) , . . . , (ik ik + 1)with respect tow is
∑k

j=1 wi j . A sequence (i1 i1 + 1) , (i2 i2 + 1) , . . . , (ik ik + 1) of adjacent transposi-
tions is said to take a permutationπ to σ ifπ (i1 i1 + 1) (i2 i2 + 1) · · · (ik ik + 1) = σ .
Theweighted Kendall distance (Farnoud andMilenkovic 2013) between π and σ with
respect to w is denoted dw(π, σ) and defined as the minimum weight of a sequence of
adjacent transpositions that takes π to σ . For example, consider the weight function

wi =
{

1, 1 ≤ i ≤ 2,

0, else,

and let π = (4, 1, 2, 3) and σ = (1, 2, 3, 4). It can be shown that a minimum weight
sequence that takes π to σ is (1 2) , (2 3) , (3 4) and that dw(π, σ) = w1+w2+w3 =
2.Note that transpositions (1 2) and (2 3) contribute to the distance but (3 4) does not.

In this section, we discuss distortion with respect to the weighted Kendall distance.
We consider decreasing weight functions as they penalize errors in higher positions
of rankings more severely. We assume here that after the pivots are assigned, they
do not change for the duration of the data stream. In the following subsections, we
find the optimum ranks of the pivots for two special cases of w. However, note that
in Algorithm 1, one cannot choose the pivots. The information about the optimum
positions for the pivots is thus useful in settings where one can find percentile values
of the data stream from some side information or estimate them in a manner similar to
that of Sect. 4.1 with a relaxed initial storage restriction. In the latter case, instead of
choosing the m pivots uniformly among the � elements, we choose them so that their
rank is as close as possible to the optimum ranks obtained in the following subsections.
We start by presenting a lemma from Hassanzadeh (2013) that will be useful in our
analysis.

Lemma 3 Consider a non-increasing weight function w and suppose that π is a
randomly chosen permutation of length k. We have

123

J Comb Optim (2016) 32:1133–1164 1153

E
[

dw (π, id)
] =

k−1
∑

h=1

wh (k − h) (Hk − Hk−h)

where id stands for the identity permutation and Hi =∑i
j=1

1
j .

Suppose that the m − 1 pivots have ranks r1, . . . , rm−1 among the n elements
and let r0 = 0 and rm = n + 1. Furthermore, suppose that a non-increasing weight
function (wi)

n−1
i=1 is given. The portion of the ranking between each two pivots is a

randompermutation of the corresponding elements. By Lemma 3, the average distance
contributed by the elements between ranks ri−1 and ri equals

ri−2
∑

h=ri−1+1

wh (ri − 1 − h)
(

Hri−ri−1−1 − Hri−h−1
)

.

Hence, the average weighted Kendall distance between the true permutation and the
output permutation given that the ranks of the pivots are given by a vector r is

E [dw(X,Y)|r] =
m
∑

i=1

ri−2
∑

h=ri−1+1

wh (ri − 1 − h)
(

Hri−ri−1−1 − Hri−h−1
)

=
m
∑

i=1

ri−ri−1−2
∑

h=1

hwri−1−h
(

Hri−ri−1−1 − Hh
)

. (15)

In the next two subsections, we focus on two special cases of the weight function w.

5.1 Top k

As an example, let wh = 1 for h ∈ [k] and wh = 0 otherwise. This weight function
only penalizes adjacent transpositions in the top k positions. As a result, it is useful
whenonly the correctness of the ordering of the top k elementsmatter to us. To illustrate
the effect of this weight function, we consider the case ofm = 2, and find the optimum
value for r1. Intuition may suggest that the pivot should be at position k to enable us
to separate the top k elements from the rest. However, as shown formally below, the
pivot should have rank less than k. This can be explained by observing that choosing
r1 to be less than k leads to a more accurate ordering of the top k elements, while
setting r1 = k would only identify these elements but assign a random order to them.

It can be shown that we must have r1 ≤ k + 1. For r1 = k + 1, from (15),

E [dw(X,Y)|r1 = k + 1] =
r1−2
∑

h=1

h(Hr1−1 − Hh)

=
r1−2
∑

h=1

r1−1
∑

j=h+1

h

j
= (r1 − 1)(r1 − 2)

4
= k (k − 1)

4
. (16)

123

1154 J Comb Optim (2016) 32:1133–1164

For r1 ≤ k, we have

E [dw(X,Y)|r1] =
r1−2
∑

h=1

h(Hr1−1 − Hh) +
n−1−r1∑

h=n−k

h(Hn−r1 − Hh)

= 1

4
(r1 − 1) (r1 − 2) − 2(n − k)(n − k − 1)

(

Hn−r1 − Hn−k
)

+ 1

4
(k − r1)(2n − k − r1 − 1). (17)

From (16) and (17), it can be seen that r1 = k leads to a smaller distortion than
r1 = k + 1 . Hence, it suffices to only consider the case of r1 ≤ k.

From (17), one can show that for x ≤ k,

E [dw(X,Y)|r1 = x] − E [dw(X,Y)|r1 = x − 1] ≤ 0

if and only if n (3r − 2k − 4) + k(k + 1) − 2 (r − 1)2 ≤ 0. Hence, for a constant k
and sufficiently large n, the best value for r1, given that it is at most k, is the largest
integer smaller than 2k+4

3 , i.e,
⌈ 2k+1

3

⌉

.
Using the method of Sect. 4.1 with � units of storage at the initial phase, to pick

a pivot with rank close to
⌈ 2k+1

3

⌉

, one can pick the element among the � received
elements whose expected rank in s is closest to

⌈ 2k+1
3

⌉

. It can be shown in a straight-
forward manner that the expected rank in s of an element that has rank i among the
initial � elements is i n+1

�+1 (see the computation of E [Ui] in the proof of Lemma 5
for a similar derivation). So among the � elements, we pick the element with rank
i = ⌈ 2k+1

3

⌉
�+1
n+1 as the pivot.

5.2 Linear weights

Let us now consider the linear weight function wh = c (n − 1 − h) + 1, where c is a
positive constant. This weight function corresponds to the case where the importance
of correctness of the ordering gradually decreases, so errors towards the bottom of the
list are penalized less than those at the top. Using (15) and some manipulation, it can
be shown that the average distance given r equals

E [dw(X,Y)|r] =
m
∑

i=1

ri−ri−1−2
∑

h=1

h (c (n − ri + h) + 1)
(

Hri−ri−1−1 − Hh
)

=
m
∑

i=1

(
ri − ri−1 − 1

2

)
9 + c(9n − 5ri − 4ri−1 − 3)

18
.

To find the optimum values of ri , we let ri = ain for 0 ≤ ai ≤ 1 and
δi = (ai − ai−1). We assume ai and m are constants and (ai) is a strictly increas-
ing sequence. The average distortion becomes

123

J Comb Optim (2016) 32:1133–1164 1155

Fig. 6 Optimum positions of pivots derived from solving (18). Each bar corresponds to the given value
for m. The positions in which a bar is divided represent the values of ai corresponding to positions of the
i th pivot

E [dw(X,Y)|r] =
m
∑

i=1

(ai − ai−1)
2
(

1 − 5

9
ai − 4

9
ai−1

)
cn3

4
+ O

(

n2
)

=
(
cn3

4

)(

1 + O
(

n−1
)) m
∑

i=1

δ2i

(

1 −
i
∑

j=1

δ j + 4

9
δi

)

.

Asymptotically, to optimize with respect to ri , we can find values for δi , i ∈ [m], that
minimize

m
∑

i=1

δ2i

(

1 −
i
∑

j=1

δ j + 4

9
δi

)

(18)

such that
∑

j δ j = 1 and δ j ≥ 0.
Figure 6 illustrates the solutions to this optimization problem obtained numerically

for m = 2, 3, 4, 5. It is evident in Figure 6 that in higher positions, pivots should be
chosen closer to each other to diminish the probability of making mistakes in these
positions. As a result, if storage restricted can be relaxed as in Sect. 4.1, then the
pivots should no longer be chosen among the first � elements to produce uniform
spaces between them, but rather such that they are closer to each other at the top and
farther at the bottom.

6 Storing the last m elements

In this section,we consider the scenario inwhich only the lastm elements can be stored.
This case is especially useful when one needs to learn user preference rankings of a set
of objects, e.g., movies, that are presented to the user one by one, and after each item
the user is asked to compare it with previous items. Because the number of presented
objects may be large, it cannot be expected that the user remembers sufficient informa-
tion about every object presented in the past. To obtain more reliable information, we
may only ask the user to compare the current item with the last m − 1 items. Further-

123

1156 J Comb Optim (2016) 32:1133–1164

more, this method decreases the number of questions asked from the user. One such
application is learning user rankings of movies in streaming services such as Netflix.

For simplicity assume m divides n. We present and analyze the following sim-
ple algorithm. The presented algorithm does not use all the information that can be
provided by comparison with the last m − 1 items. However, its simplicity enables
analytical analysis of its performance.
Algorithm 2

First sort each group of m consecutive elements in the stream into a block
of size m and then produce the output premutation, denoted by Y2, by interleav-
ing the sorted blocks, where interleaving is defined as follows. For t sequences
a1, . . . , at , the interleaved sequence a1 � a2 � · · · � at is defined as the sequence
a11, . . . , at1, a12, . . . , at2, . . . , where ai j is the j th symbol of ai . The definition is
valid for finite and infinite sequences. Intuition for using interleaving is given after the
example below.

Example 4 Same as in 1, suppose s = (98, 15, 23, 13, 2, 89, 60, 118, 104) and, there-
fore, X = (5, 4, 2, 3, 7, 6, 1, 9, 8). Furthermore, suppose m = 3. Sorting the first 3
items gives s2 < s3 < s1, corresponding to the sequence 2, 3, 1. The next two blocks
of length 3 give s5 < s4 < s6 and s7 < s9 < s8 corresponding to the sequences
5, 4, 6 and 7, 9, 8, respectively. We have Y2 = (2, 3, 1) � (5, 4, 6) � (7, 9, 8) =
(2, 5, 7, 3, 4, 9, 1, 6, 8), corresponding to the sorting

s′ = (15, 2, 60, 23, 13, 104, 98, 89, 118).

As a result dK (X,Y2) = 8 and dC (X,Y2) = 3.

Interleaving the sorted blocks of length m is motivated by the maximum likelihood
estimation of the ranks of the elements of each block among the n elements of s. To
see this, consider an element α with rank i in a block of length m. What is the most
likely value for the rank of α among the n elements of s? To answer this question, let
f j denote the probability of the event that the rank of α in s equals j . Note that

f j =
(
n

m

)−1(j − 1

i − 1

)(
n − j

m − i

)

for i ≤ j ≤ n − m + i.

By investigating the inequality f j ≥ f j−1, it can be shown that the maximum value

of f j is attained at j =
⌈

n i−1
m−1

⌉

. The interleaving method described in Algorithm 2

places α between positions n i−1
m and n i

m and thus this method is compatible with the
maximum likelihood estimate of the position of α in s.

Obviously, the results of Sect. 3, namely Theorems 1, 2, and 3, which provide an
upper bound on mutual information and lower bounds on storage for a given distor-
tion, are also valid for Algorithm 2. We now study Algorithm 2 regarding its mutual
information and average Kendall tau distortion.

The following theorem compares the mutual information I (X; Y2) between the
true permutation and the output produced by the algorithm of this section with the
best possible value of mutual information.

123

J Comb Optim (2016) 32:1133–1164 1157

Theorem 8 Assumem divides n and n,m → ∞. ForAlgorithm2with streammemory
m, we have

I (X; Y2) ∼ I
(

X; Y ∗) ,

where Y ∗ is the result of an algorithm that maximizes the mutual information between
X and Y with stream memory m.

Proof Given Y2, the number of possible choices for X is
(

n

m, . . . ,m

)

= n!
(m!)n/m ,

where eachm elements correspond to one block. Note that the order of the elements of
each block in X and Y2 is the same and so, one only needs to determine the positions
of elements of each block. Hence H (X |Y2) = lg n!

(m!)n/m and

I (X; Y2) = H(X) − H (X |Y2) = n

m
lgm! ≥ n

m
lg
(m

e

)m = n lgm − n lg e

which, by Theorem 1, implies that

I
(

X; Y ∗)− I (X; Y2) ≤ (n − m) lg e.

Hence,

I (X; Y2)
I (X; Y ∗)

≥ 1 + n lg e − m lg e

n lgm − m lg e + O (lgm)
,

where we have again used Theorem 1. If m, n → ∞, we can further simplify this
expression as

I (X; Y2)
I (X; Y ∗)

≥ 1 + O(n)

n lgm + O (n)
= 1 + o (1) .

The fact that I (X;Y2)
I (X;Y ∗) ≤ 1 completes the proof. �

We now turn to the Kendall tau distortion of the algorithm. First, we present two
lemmas that will be useful in our analysis.

Lemma 4 Let T be a discrete random variable with distribution pi = P [T = i] and
t be a constant. It holds that

E [|T − t |] ≤
√

E[(T − t)2].

Proof We have

(E [|T − t |])2 =
(∑

i

pi |i − t |
)2 =

(∑

i

√
pi

√

pi (i − t)2
)2

≤
∑

i

pi
∑

j

p j (j − t)2 = E[(T − t)2],

123

1158 J Comb Optim (2016) 32:1133–1164

where the inequality follows from the Cauchy–Schwarz inequality. �

Lemma 5 Let P1 and P2 be two disjoint sets of size m; let the sequences a
= a1, . . . , am, b = b1, . . . , bm be permutations of P1, and P2, respectively; and let
c = c1, . . . , c2m be a randomly chosen permutation of P1 ∪ P2 that satisfies ai ≺c a j

and bi ≺c b j for all i, j ∈ [m], i < j . For m ≥ 3,

E[dK (a � b, c)] ≤ m3/2

√
2

·

Proof Let Ui be a random variable representing the position of bi in c. From this
definition, for the Kendall tau distance between a � b and c, we have

dK (a � b, c) =
m
∑

i=1

|Ui − 2i | ,

and so, by Lemma 4,

E[dK (a � b, c)] =
m
∑

i=1

E [|Ui − 2i |] ≤
m
∑

i=1

√

E[(Ui − 2i)2].

We now show that
∑m

i=1

√

E[(Ui − 2i)2] ≤ m3/2√
2
.

The distribution of Ui is given by

P (Ui = j) =
(j−1
i−1

)(2m− j
m−i

)

(2m
m

) ,

and thus

E [Ui] =
(
2m

m

)−1∑

j

j

(
j − 1

i − 1

)(
2m − j

m − i

)

= i

(
2m

m

)−1∑

j

(
j

i

)(
2m − j

m − i

)

= i

(
2m

m

)−1(2m + 1

m + 1

)

= i
2m + 1

m + 1

and

E [Ui (Ui + 1)] =
(
2m

k

)−1∑

j

j (j + 1)

(
j − 1

i − 1

)(
n − j

k − i

)

= i

(
2m

m

)−1∑

j

(j + 1)

(
j

i

)(
n − j

m − i

)

= i (i + 1)

(
2m

m

)−1∑

j

(
j + 1

i + 1

)(
n − j

k − i

)

123

J Comb Optim (2016) 32:1133–1164 1159

= i (i + 1)

(
2m

m

)−1(2m + 2

m + 2

)

= i (i + 1)
(2m + 1) (2m + 2)

(m + 1) (m + 2)

= 2i (i + 1) (2m + 1)

(m + 2)
·

Suppose m ≥ 3. We observe

E[(Ui − 2i)2] = E [Ui (Ui + 1)] − (4i + 1) EUi + 4i2

= 2im(m − i) + 2i2 + im

(m + 1)(m + 2)

≤ m2(2m + 1)2

8(m − 1)(m + 1)(m + 2)

≤ m

2
,

where the inequalities follow in a straightforwardmanner from the facts that 1 ≤ i ≤ m
and m ≥ 3, respectively. Hence,

E[dK (a � b, c)] =
m
∑

i=1

E [|Ui − 2i |] ≤
m
∑

i=1

√

E[(Ui − 2i)2] ≤ m3/2

√
2

·

�

The next theorem presents an upper bound on the average Kendall tau distortion

E[dK (X,Y2)] of the algorithm.

Theorem 9 Assume m divides n. For Algorithm 2 with stream memory m, we have

E[dK (X,Y2)] ≤ n (n − m)

2
√
2m

.

Proof Since there are
(n/m

2

)

pairs of blocks of length m, by Lemma 5, the expected
total distortion is bounded as

E [dK (X,Y2)] ≤
(
n/m

2

)
m3/2

√
2

= n (n − m)

2
√
2m

·

For Algorithm 2, let μ = m
n and δ = E [dK (X,Y2)] /n. Suppose δ = √

n + O(1).
From the above theorem,

μ ≤ 4d2 + n − 4d2
√

1 + n/(2d2)

n
=

5n − 4
√

3
2n + O(1)

n
� 0.1 + o(1).

123

1160 J Comb Optim (2016) 32:1133–1164

On the other hand, the lower bound on μ, from Theorem 2, is

μ ≥ 1

e2
√
n
(1 + o(1)).

Hence, in contrast with Algorithm 1, there is a large gap between the lower and upper
bounds onμ for Algorithm 2. Closing this gap requires a better algorithm or improved
bounds. �

7 Conclusion

In this paper, we studied the fundamental trade-off between the amount of available
storage and the quality of a sorting of a data stream, where the quality of a sorting
is measured via permutation distortion metrics. Our results provide lower-bounds
on storage for any algorithm with given distortion in the Kendall tau and Chebyshev
metrics. Furthermore,we provided an algorithm that asymptotically requires a constant
factor as much storage as an optimal algorithm with the same Kendall tau distortion.
By considering the special case of m = 2, we showed that it is possible to improve
the performance of this algorithm by updating its pivots. However, analytical study of
the gain in performance for m > 2 is still an open problem.

Since applications are usually not run in isolation, it is useful to study performance
with resource requirements that may vary through the execution. For this reason, we
studied the extension of the algorithm to the case where the storage requirement can
be relaxed for parts of the algorithm’s execution. Furthermore, we studied the case
where the distortion metric is the weighted Kendall tau measure, which can reflect the
fact that top of a ranking is typically more important.

Finally, we considered the case in which only information about the lastm observed
elements is available, to model the problem of learning user preference ranking where
the user only remembers recently observed elements. While in this case, we present
an algorithm that is optimal with regards to mutual information, further research is
required to design algorithms that are optimal with regards to appropriate distortion
measures.

Acknowledgments The authors would like to thank Ryan Gabrys and Yue Li for useful discussions and
comments. Furthermore, the authors thank anonymous reviewers whose comments greatly improved this
paper.

Appendix

Proof of (10)

Lemma 6 We have

n−m+1
∑

k=1

(
n − k − 1

m − 2

)

k ln k ≤
(
n

m

)(

Hn − Hm + 1 − m

n

)

.

123

J Comb Optim (2016) 32:1133–1164 1161

Proof To prove the upper bound on
∑n−m+1

k=2

(n−k−1
m−2

)

k lg k, we use Abel’s iden-
tity Apostol (1976, Theorem 4.2), which states that for an arithmetic function a, a
real number x , and a function f with a continuous derivative on [1, x], we have

∑

1≤k≤x

a (k) f (k) = A (x) f (x) −
∫ x

1
A (y) f ′ (y) dy,

where A (y) = ∑

1≤k≤y a (k) for y ∈ R. To use Abel’s identity, we let a (k)

= k
(n−k−1

m−2

)

and f (k) = ln k. Hence,

A (y) =
∑

1≤k≤y

k

(
n − k − 1

m − 2

)

=
(
n

m

)

− (�y� (m − 1) + n)

m

(
n − �y� − 1

m − 1

)

,

for y ≥ 1 and A (y) = 0 for y < 1. By Abel’s identity, we have

n−m+1
∑

k=1

(
n − k − 1

m − 2

)

k ln k = A(n − m + 1) f (n − m + 1) −
∫ n−m+1

y=1
A(y) f ′(y)dy.

The first term on the right side equals
(n
m

)

ln (n − m + 1) and for the second term, we
find

∫ n−m+1

y=1
A(y) f ′(y)dy

=
∫ n−m+1

y=1

((
n

m

)

− (�y� (m − 1) + n)

m

(
n − �y� − 1

m − 1

))
1

y
dy

=
(
n

m

)

ln (n − m + 1) −
∫ n−m+1

y=1

(�y� (m − 1) + n)

m

(
n − �y� − 1

m − 1

)
1

y
dy.

Hence,

n−m+1
∑

k=1

(
n − k − 1

m − 2

)

k ln k =
∫ n−m+1

y=1

(�y� (m − 1) + n)

m

(
n − �y� − 1

m − 1

)
1

y
dy.

We proceed as follows:

n−m+1
∑

k=1

(
n − k − 1

m − 2

)

k ln k

≤
∫ n−m+1

y=1

(�y� (m − 1) + n)

m

(
n − �y� − 1

m − 1

)
1

�y�dy

123

1162 J Comb Optim (2016) 32:1133–1164

=
n−m
∑

k=1

k(m − 1) + n

m

(
n − k − 1

m − 1

)
1

k

= m − 1

m

n−m
∑

k=1

(
n − k − 1

m − 1

)

+ n

m

n−m
∑

k=1

(
n − k − 1

m − 1

)
1

k

= m − 1

m

(
n − 1

m

)

+ n

m

(
n − 1

m − 1

)

(Hn−1 − Hm−1)

= m − 1

m

(
n − 1

m

)

+
(
n

m

)

(Hn − Hm) + 1

m

(
n − 1

m − 1

)(
n − m

m

)

=
(
n − 1

m

)

+
(
n

m

)

(Hn − Hm) =
(
n

m

)(

Hn − Hm + 1 − m

n

)

,

where we have used the fact that for nonnegative integers �, j , we have

�− j
∑

i=1

(
� − i

j

)
1

i
=
(

�

j

)
(

H� − Hj
)

,

proved below, to obtain the third equality.
To prove

�− j
∑

i=1

(
� − i

j

)
1

i
=
(

�

j

)
(

H� − Hj
)

let us write it as

�
∑

i= j+1

(� − i + j)!
(� − i)!

1

i − j
= �!

(� − j)!
�
∑

i= j+1

1

i
· (19)

The proof is by induction. The equality (19) holds for j = 0 as both sides reduce
to
∑�

i=1
1
i . As induction hypothesis, suppose (19) holds for a certain value of j . We

show that it also holds for j + 1. We have

�
∑

i= j+2

(� − i + j + 1)!
(� − i)!

1

i − j − 1

=
�−1
∑

i= j+1

(� − i + j)!
(� − i − 1)!

1

i − j

=
�
∑

i= j+1

(� − i) (� − i + j)!
(� − i)!

1

i − j

=
�
∑

i= j+1

(� − j) (� − i + j)!
(� − i)!

1

i − j
−

�
∑

i= j+1

(i − j) (� − i + j)!
(� − i)!

1

i − j

123

J Comb Optim (2016) 32:1133–1164 1163

= (� − j)
�
∑

i= j+1

(� − i + j)!
(� − i)!

1

i − j
−

�
∑

i= j+1

(� − i + j)!
(� − i)!

(a)= (� − j)
�!

(� − j)!
�
∑

i= j+1

1

i
− j !

�
∑

i= j+1

(
� − i + j

j

)

= �!
(� − j − 1)!

�
∑

i= j+1

1

i
− j !

�−1
∑

i= j

(
i

j

)

= �!
(� − j − 1)!

�
∑

i= j+1

1

i
− �!

(j + 1) (� − j − 1)!

= �!
(� − j − 1)!

�
∑

i= j+2

1

i
,

where for (a) we have used the induction hypothesis. �

Proof of (14)

In this subsection, we prove (14) as follows

P
(

Du,v

(

X,Y ′′
1

))

(a)= 1

t

�(3t−2)/4�
∑

a=0

(a+2
2

)+ (t−a+1
2

)

2
(t+2

2

) + 1

t

t−1
∑

a=�(3t−2)/4�+1

(a+2
3

)+ (t+2
3

)− (t−a+2
3

)

2a
(t+2

2

)

= 1

t3 + O
(

t2
)

[�(3t−2)/4�
∑

a=0

((
a + 2

2

)

+
(
t − a + 1

2

))

+
t−1
∑

a=�(3t−2)/4�+1

1

a

((
a + 2

3

)

+
(
t + 2

3

)

−
(
t − a + 2

3

))]

= 1

t3 + O
(

t2
)

[
(3t/4)3

6
+ t3 − (t/4)3

6
+ t3 − (3t/4)3

18
+ O

(

t2
)

+
t−1
∑

a=�(3t−2)/4�+1

t3 − (t − a)3 + O
(

t2
)

6a

]

= 1

1 + O
(

t−1
)

⎛

⎝
307

1152
+ 1

6

t−1
∑

�(3t−2)/4�+1

(
3

t
− 3a

t2
+ a2

t3
+ O

(
1

at

))
⎞

⎠

= 1

1 + O
(

t−1
)

(
307

1152
+ 1

6

(
3

4
− 21

32
+ 37

192
+ O

(
1

t

)))

= 181

576
+ o(1),

123

1164 J Comb Optim (2016) 32:1133–1164

where (a) follows from (13) andwherewe have used
∑k+O(1)

a=0

(a+O(1)
2

) = k3
6 +O

(

k2
)

and 1
a

(a+2
3

) = 1
3

(a+2
2

)

.

References

Apostol TM (1976) Introduction to analytic number theory. Springer, New York
Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Models and issues in data stream systems. In:

Proceedings of 21st ACM symposium on principles of database systems (PODS), New York
Carterette B (2009) On rank correlation and the distance between rankings. In: Proceedings of 32nd inter-

national SIGIR conference on research and development in information retrieval, ACM Press, New
York, pp 436–443

Chakrabarti A, JayramTS, PǎtraşcuM (2008) Tight lower bounds for selection in randomly ordered streams.
In: ACM-SIAM symposium on discrete algorithms (SODA), Society for Industrial and AppliedMath-
ematics, Philadelphia, pp 720–729

Chen CP, Qi F (2008) The best lower and upper bounds of harmonic sequence. Glob J Appl Math Math Sci
1(1):41–49

Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv
Comput Math 5(1):329–359. doi:10.1007/BF02124750

Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New York
Diaconis P (1988) Group representations in probability and statistics, vol 11. Institute of Mathematical

Statistics, Hayward
Farnoud F, Milenkovic O (2013) Aggregating rankings with positional constraints. In: Proceedings of IEEE

information theory workshop (ITW), Seville
Farnoud F, Schwartz M, Bruck J (2014a) Rate-distortion for ranking with incomplete information. arXiv

preprint: http://arxiv.org/abs/1401.3093
Farnoud F, Schwartz M, Bruck J (2014b) Bounds for permutation rate-distortion. In: Proceedings of IEEE

international symposium on information theory (ISIT), Honolulu
Greenwald M, Khanna S (2001) Space-efficient online computation of quantile summaries. In: Proceedings

of ACM SIGMOD international conference on management of data, ACM, New York, pp 58–66.
doi:10.1145/375663.375670

Hassanzadeh F (2013) Distances on rankings: from social choice to flashmemories. Ph.D. thesis, University
of Illinois at Urbana–Champaign. http://hdl.handle.net/2142/44268

Holst L (1980) On the lengths of the pieces of a stick broken at random. J Appl Probab 17(3):623–634
Kemeny JG (1959) Mathematics without numbers. Daedalus 88(4):577–591
Kumar R, Vassilvitskii S (2010) Generalized distances between rankings. In: Proceedings of 19th interna-

tional world wide web conference, Raleigh, pp. 571–580
Manku GS, Rajagopalan S, Lindsay BG (1998) Approximate medians and other quantiles in one pass and

with limited memory. In: Proceedings of ACM SIGMOD international conference on management of
data, ACM, New York, pp 426–435. doi:10.1145/276304.276342

McGregor A, Valiant P (2012) The shifting sands algorithm. In: ACM-SIAM symposium on discrete
algorithms (SODA), SIAM, pp 453–458. http://www.dl.acm.org/citation.cfm?id=2095116.2095155

Munro J, Paterson M (1980) Selection and sorting with limited storage. Theor Comput Sci 12(3):315–323.
http://www.sciencedirect.com/science/article/pii/0304397580900614

Sedgewick R, Wayne K (2011) Algorithms, 4th edn. Addison-Wesley Professional, Reading
Shieh GS (1998) A weighted Kendall’s tau statistic. Stat Probab Lett 39(1):17–24
Yilmaz E, Aslam JA, Robertson S (2008) A new rank correlation coefficient for information retrieval. In:

Proceedings of 31st annual international SIGIR conference research and development in information
retrieval, ACM, New York, pp 587–594

123

http://dx.doi.org/10.1007/BF02124750
http://arxiv.org/abs/1401.3093
http://dx.doi.org/10.1145/375663.375670
http://hdl.handle.net/2142/44268
http://dx.doi.org/10.1145/276304.276342
http://www.dl.acm.org/citation.cfm?id=2095116.2095155
http://www.sciencedirect.com/science/article/pii/0304397580900614

	Approximate sorting of data streams with limited storage
	Abstract
	1 Introduction
	2 Problem statement and preliminaries
	3 Universal bounds
	4 Algorithm for limited-storage approximate sorting
	4.1 Using more than m storage units in initial phase
	4.2 Updating the pivot for m=2

	5 Weighted distance
	5.1 Top k
	5.2 Linear weights

	6 Storing the last m elements
	7 Conclusion
	Acknowledgments
	Appendix
	Proof of (10)
	Proof of (14)

	References

