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Many Applications of Rankings...

We often encounter rankings of:

politicians, celebrities, performers, job candidates

schools, teams in professional sports

movies, products

emotions, pain levels, quality of drug treatments, ...

and use ranking theory in:

Computer science (search engines, etc).

Recommender systems, marketing.

General social sciences: competitions, voting.

Management and decision making.
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Rank Aggregation

Rank Aggregation: Combining a set of rankings such that the result
is a ranking “representative” of the set.

Expert 1 Expert 2 Expert 3 Aggregate

Caltech UIUC UCB ?

UIUC UCB UIUC ?

Stanford Caltech MIT ?

MIT MIT Stanford ?

UCB Stanford Caltech ?

Mathematically, rankings are represented by permutations, i.e.,
arrangements of a set of objects.

Example: (b, c , a) – a permutation of the set {a, b, c}
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Distance-Based Rank Aggregation
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Given expert rankings σ1, σ2, · · · , σm,
the rank aggregation problem can be
stated as

π∗ = arg min
π

m
∑

i=1

d(π, σi ).

Equivalently, want the median of
permutations.

But how do we choose the distance?
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Distances...

Rank aggregation requires a distance function on the space of
permutations

Kemeny 59 Kemeny’s axiomatic approach to determine appropriate
distance function – Kendall τ .

Dwork 01 Finding Kemeny aggregate is NP-hard, bipartite matching and
Markov chain methods for aggregation [Dwork et al].

Sculley 07 Aggregation with similarity score [Sculley et.al.].

Kumar 10 Generalizing Kendall τ and Spearman’s footrule [Kumar et al].
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Kemeny’s Axioms

Kemeny’s axiomatic approach for
determining a distance function:

1 d(·, ·) is a metric.

2 Relabeling of objects does not
change the distance.

3 d(π, σ) = d(π, ω) + d(ω, σ) iff ω is “between” π and σ.
Betweenness: for a, b ∈ [n], if π and σ both rank a before b,
then ω also ranks a before b

4 If two rankings agree except on a “segment,” position of
segment within ranking is not important:
d(abcde, abdce) = d(cdabe, dcabe).

“What’s in a name? That which we call a rose, by any other name would

smell as sweet.”
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Kendall τ

The unique distance that satisfies Kemeny’s axioms is Kendall τ

Kendall τ= minimum number of swaps of adjacent elements
needed to transform one into the other = number of disagreements
between two rankings.

A swap of two elements is called a transposition. Transposition of
elements in positions i and j is denoted by (ij)

Example: K(abcde, cabde) = 2 : abcde
(23)
−−→ acbde

(12)
−−→ cabde
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Kendall τ
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Kendall τ can be represented
by a graph with n! vertices.

Neighboring vertices differ by
an adjacent transposition.

Distance is the length of the
shortest path.
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Kemeny Aggregation

Kemeny’s method is the only rule that is [Young, Levenglick, 1978]:

Consistent: If two committees meeting separately arrive at the
same ranking, their joint meeting will still give the same
ranking.

Condorcet: If a candidate exists that wins against all other in
pairwise comparison, that candidate will be ranked first.

Neutral: Treats all candidates the same.
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Rank Aggregation: When Kendall Is Not Suitable
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σ π1 π2

Melbourne Melbourne Vienna

Vienna Vienna Melbourne

Vancouver Vancouver Vancouver

Toronto Toronto Toronto

Calgary Calgary Calgary

Adelaide Adelaide Adelaide

Sydney Sydney Sydney

Helsinki Perth Helsinki

Perth Helsinki Perth

Auckland Auckland Auckland

Kendall τ treats all
positions in a ranking
similarly

For voters, top portion of
rankings may be more
important than the
bottom

A voter with vote σ is
likely to prefer π1 to π2

But: K(σ, π1) = K(σ, π2)
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Rank Aggregation: When Kendall Is Not Suitable

Click-through rate of a link: ratio of number of clicks to the
number of displays
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Figure : Click-through rates for 1st page of Google search results

In aggregating search results, top of the ranking is more important
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Generalizing the Kendall Distance

How should the axioms be changed?
- Let us remove the fourth axiom

1 Distance function is a pseudo-metric

2 Relabeling of objects does not change distance.

3 d(σ, π) = d(π, ω) + d(ω, σ) iff ω is between π and σ

4 If two rankings agree except on a “segment,” position of
segment within ranking is not important:
d(abcde, abdce) = d(cdabe, dcabe).
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Generalizing the Kendall Distance

How should the axioms be changed?
- Let us remove the fourth axiom

1 Distance function is a pseudo-metric

2 Relabeling of objects does not change distance.

3 d(σ, π) = d(π, ω) + d(ω, σ) iff ω is between π and σ

4 If two rankings agree except on a “segment,” position of
segment within ranking is not important:
d(abcde, abdce) = d(cdabe, dcabe).

The solution is again Kendall τ !
Removing the fourth axiom is not sufficient.
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Why Modify the Third Axiom?
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Lemma [F, Touri, Milenkovic]:
For complete rankings, fourth
axiom follows from the third
axiom.

Special case: n = 3

Consider the distinct paths
between abc and cba.
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Generalizing the Kendall Distance

Our relaxation of Kemeny’s axioms:

1 Distance function is a pseudo-metric

2 Relabeling of objects does not change distance.

3 d(σ, π) = d(π, ω) + d(ω, σ) iff ω is “between” π and σ for
some ω between π and σ if π and σ disagree on more than
one pair of elements.

4 If two rankings agree except on a “segment,” position of
segment within ranking is not important:
d(abcde, abdce) = d(cdabe, dcabe).

Unique solution: weighted Kendall τ [F, Touri, Milenkovic, 2012]
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New Distance: Weighted Kendall Distance

Farnoud et al. Caltech, 2/14/13

b
a
c

a
b
c

b
c
a

c
b
a

c
a
b

a
c
b

(12)

(12)

(12)

(23)

(23)

(23)

Weighted Kendall distance:
minimum weight of
transforming one permutation
into the other using adjacent
transpositions where each
adjacent transposition has a
given weight.

Weight of transposition (ij) is
denoted by ϕ(i , j).

d(abc , cba) =
2ϕ(2, 3) + ϕ(1, 2).
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Decreasing Weight Functions
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σ π1 π2

Melbourne Melbourne Vienna

Vienna Vienna Melbourne

Vancouver Vancouver Vancouver

Toronto Toronto Toronto

Calgary Calgary Calgary

Adelaide Adelaide Adelaide

Sydney Sydney Sydney

Helsinki Perth Helsinki

Perth Helsinki Perth

Auckland Auckland Auckland

Weighted Kendall distance
between σ and π1 =
d(σ, π1) = ϕ(8, 9)

Weighted Kendall distance
between σ and π2 =
d(σ, π2) = ϕ(1, 2)

If we choose ϕ(i , i + 1) to
be decreasing in i , then
d(σ, π1) < d(σ, π2) ⇒
decreasing weight
function.
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Weighted Kendall Distance: Example I

Consider the set of rankings

Σ =













1 4 2 3

1 4 3 2

2 3 1 4

4 2 3 1

3 2 4 1













.

The Kemeny aggregate is (4, 2, 3, 1).

The optimum aggregate ranking for the weight function ϕ with
ϕ(i , i + 1) = (2/3)i−1, i ∈ [4], equals (1, 4, 2, 3).

A candidate with both strong showings and weak showings beats a
candidate with a rather average performance.
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Weighted Kendall Distance: Example II

Consider the set of rankings

Σ =









1 2 3

1 2 3

3 2 1

2 1 3









.

The Kemeny aggregates are (1, 2, 3), (2, 1, 3).

Weighted Kendall can be used to pick a unique solution: for any
strictly decreasing weight function the solution is unique, namely,
(1, 2, 3).
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Computing Weighted Kendall Distance

Computing Kendall τ is straightforward: count the number of
disagreements.

How to compute the weighted Kendall distance for general weight
functions is not known, but is known for a very important case:

Monotonic weight function: ϕ is monotonic if ϕ(i , i + 1) is
monotonic in i .

Theorem [F, Touri, Milenkovic]: Weighted Kendall distance with
monotonic weight can be computed in time O(n4).

Theorem [F, Milenkovic]: 2-approximation for weighted Kendall
distance with general weights can be computed in time O(n2).
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Weighted Transposition Distance

Instead of allowing only adjacent transpositions, we can allow all
transpositions

To each transposition (i j) assign weight ϕ(i , j).

Weighted Transposition Distance: Minimum weight of a sequence
of transpositions that transform one permutation to another.

Appropriate for modeling similarity among candidates:

ϕ(Godfather I,Godfather II)

< ϕ(Godfather I,Goodfellas)

< ϕ(Godfather I,Star Wars)
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Common Distance Functions

Several distance functions used for rank aggregation [Diaconis and
Graham 88] are special cases of the weighted transposition
distance:

Kendall’s τ : K (π, σ) = # of transpositions of adjacent ranks.
Equivalent to ϕK (i , i + 1) = 1.

Spearman’s Footrule: F (π, σ) =
∑

i |π
−1(i)− σ−1(i)|.

Equivalent to the path weight function ϕF (i , j) = |i − j |.

Cayley’s distance:
T (π, σ) = # of transpositions
Equivalent to ϕT (i , j) = 1.
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Weighted Transposition Distance: Example

Consider the votes listed in Σ,

Σ =





1 2 3 4

3 2 1 4

4 1 3 2



 .

Even and odd numbers represent different types of candidates:

ϕ(i , j) =

{

1, if i , j are both odd or both even,

2, else.

Votes are “diverse” : they alternate between odd and even numbers.

Kemeny aggregate is (1, 3, 2, 4) : odd numbers ahead even numbers.

Aggregation using ϕ gives (1, 2, 3, 4).
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Computing Weighted Transposition Distance

What is the distance of a single transposition from the identity?
Example: Distance of (red yellow) to identity

Find a path such that two copies of the path minus its heaviest
edge has minimum weight
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Computing Weighted Transposition Distance

4-approximation algorithm for arbitrary weight functions in
O(n4) operations

2-approximation algorithm if weight function is a metric, in
O(n4) operations

2-approximation algorithm for path weight functions (e.g.
weighted Kendall) in O(n4) operations

Exact algorithms for metric-path weight functions (e.g.
weighted Spearman’s Footrule) in O(n2) operations.

See F.Farnoud and O.Milenkovic, “Sorting of permutations by cost-constrained

transpositions,” IT Transaction, 58(1):3–23, Jan. 2012.
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Rank Aggregation

Recall: Given voter rankings σ1, σ2, · · · , σm, the rank aggregation
problem can be stated as

π∗ = arg min
π

m
∑

i=1

dϕ(π, σi ).

For many distance functions, problem is NP-hard.

Alternative ways to find reasonable solutions:

Approximation: 2-approximation or 4-approximation
(depending on the properties of ϕ) [Dwork et al. 2001] + local
search

Linear programming relaxation [Conitzer et al. 2006]

Heuristic Markov chain methods developed in the spirit of
PageRank [Dwork et al. 2001]
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Rank Aggregation: Approximation

For general weight function ϕ, to find

π∗ = arg min
π

m
∑

i=1

dϕ(π, σi )

we approximate dϕ by D =
∑

i f (π−1(i), σ−1(i)) such that

(1/2)D(π, σ) ≤ dϕ(π, σ) ≤ 2D(π, σ).
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Rank Aggregation: Approximation

For general weight function ϕ, to find

π∗ = arg min
π

m
∑

i=1

dϕ(π, σi )

we approximate dϕ by D =
∑

i f (π−1(i), σ−1(i)) such that

(1/2)D(π, σ) ≤ dϕ(π, σ) ≤ 2D(π, σ).

Using perfect min weight bipartite matching algorithms, can find

π′ = arg min
π

m
∑

i=1

D(π, σi )

exactly, and show that
∑m

i=1 dϕ(π
′, σi ) ≤ 4

∑m
i=1 dϕ(π

∗, σi ).
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Rank Aggregation: Approximation

For general weight function ϕ, to find

π∗ = arg min
π

m
∑

i=1

dϕ(π, σi )

we approximate dϕ by D =
∑

i f (π−1(i), σ−1(i)) such that

(1/2)D(π, σ) ≤ dϕ(π, σ) ≤ 2D(π, σ).

Using perfect min weight bipartite matching algorithms, can find

π′ = arg min
π

m
∑

i=1

D(π, σi )

exactly, and show that
∑m

i=1 dϕ(π
′, σi ) ≤ 4

∑m
i=1 dϕ(π

∗, σi ).

Search for a local optimum starting from π′.
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Rank Aggregation: Linear Programming Relaxation

Kendall τ distance = number of disagreements
cij is the number of voters that prefer i to j

πij equals 1 if the aggregate π prefers i to j

Aggregation problem as integer program [Conitzer et al, 2006]:

minimize
∑

i ,j

cjiπij

subject to πij + πji = 1

πij + πjk + πki ≤ 2

πij ∈ {0, 1}

If we relax the condition πij ∈ {0, 1} to 0 ≤ πij ≤ 1, we have a
linear program
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Rank Aggregation: Linear Programming Relaxation

For weights that decrease arithmetically, we can do the same.
πijk equals 1 if the aggregate π prefers i to j and j to k .
αijk measures the disagreement of voters with ordering (ijk).

Aggregation problem as integer program:

minimize
∑

i ,j ,k

αijkπijk

subject to πijk + πjik + · · · + πkji = 1

πijk + πikj + πkij = πij

πijk ∈ {0, 1}

αijk =
∑

rst

#voters with preference (rst) ∗ dϕ(rst, ijk)

Again, removing integrality condition leads to a linear program.
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Rank Aggregation: Markov Chain Methods

Based on ideas behind PageRank and work by Dwork et.al., 2001.

Form a Markov chain with nodes indexed by candidates, and
transition probabilities “determined” by voters.

If a is preferred to b by large number of voters, the transition
probability from a to b should be high.

The equilibrium distribution reflects preference order of
candidates.

How should a Markov chain approach be designed for non-uniform
weights?

See F, Touri, Milenkovic, “Nonuniform Vote Aggregation Algorithms,” SPCOM

2012.
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Rank Aggregation: Markov Chain Methods

The probability of going from i to j , where j is ranked higher,
depends on sum of the weights of adjacent transpositions between
the positions of a and b:

βij (σ) = max
l :jσ≤l<iσ

∑iσ−1
h=l ϕ(h, h + 1)

iσ − l
,

appropriately normalized.

For votes abc , abc , bca:

See F, Touri, Milenkovic, “Nonuniform Vote Aggregation Algorithms,” SPCOM

2012.
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Thank you!
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