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Many Applications of Rankings...

We often encounter rankings of:
@ politicians, celebrities, performers, job candidates
@ schools, teams in professional sports
@ movies, products
o

emotions, pain levels, quality of drug treatments, ...

and use ranking theory in:
@ Computer science (search engines, etc).
@ Recommender systems, marketing.
@ General social sciences: competitions, voting.

@ Management and decision making.
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Rank Aggregation

Rank Aggregation: Combining a set of rankings such that the result
is a ranking “representative” of the set.

Expert 1 | Expert 2 | Expert 3 | Aggregate

Caltech UluC UCB ?
ulucC UCB ulucC ?

Stanford Caltech MIT ?
MIT MIT Stanford 7
UCB Stanford Caltech 7

Mathematically, rankings are represented by permutations, i.e.,
arrangements of a set of objects.

Example: (b, ¢, a) — a permutation of the set {a, b, c}
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Distance-Based Rank Aggregation

Given expert rankings 01,02, ,0m,
the rank aggregation problem can be
stated as

m
7w = arg min Z d(m,o;).
i=1

Equivalently, want the median of
permutations.

But how do we choose the distance?
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Distances...

Rank aggregation requires a distance function on the space of
permutations

Kemeny 59 Kemeny's axiomatic approach to determine appropriate
distance function — Kendall 7.

pwork 01 Finding Kemeny aggregate is NP-hard, bipartite matching and
Markov chain methods for aggregation [Dwork et al.

sculley 07 Aggregation with similarity score [Sculley et.al.].

kumar 10 Generalizing Kendall 7 and Spearman'’s footrule [Kumar et al].
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Kemeny's Axioms

Kemeny's axiomatic approach for
determining a distance function:

O d(-,-) is a metric.

© Relabeling of objects does not
change the distance.

Q d(w,0) =d(m,w) + d(w, o) iff w is “between” 7 and o.
Betweenness: for a, b € [n], if m and o both rank a before b,
then w also ranks a before b

Q If two rankings agree except on a “segment,” position of

segment within ranking is not important:
d(abcde, abdce) = d(cdabe, dcabe).

“What's in a name? That which we call a rose, by any other name would

smell as sweet.”
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Kendall 7

The unique distance that satisfies Kemeny's axioms is Kendall 7

Kendall 7= minimum number of swaps of adjacent elements
needed to transform one into the other = number of disagreements
between two rankings.

A swap of two elements is called a transposition. Transposition of

elements in positions i and j is denoted by (i)

Example: K(abcde, cabde) =2: abcde B, acbde Y2 cabde
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Kendall 7

Kendall 7 can be represented
by a graph with n! vertices.

Neighboring vertices differ by
an adjacent transposition.

Distance is the length of the
shortest path.
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Kemeny Aggregation

Kemeny's method is the only rule that is [Young, Levenglick, 1978]:

@ Consistent: If two committees meeting separately arrive at the
same ranking, their joint meeting will still give the same
ranking.

@ Condorcet: If a candidate exists that wins against all other in
pairwise comparison, that candidate will be ranked first.

o Neutral: Treats all candidates the same.
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Rank Aggregation: When Kendall Is Not Suitable

@ Kendall 7 treats all
positions in a ranking
similarly

@ For voters, top portion of
rankings may be more
important than the
bottom

@ A voter with vote o is
likely to prefer 71 to

@ But: K(o,m1) = K(o,m2)

| o | m | m
Melbourne | Melbourne Vienna
Vienna Vienna Melbourne
Vancouver | Vancouver | Vancouver
Toronto Toronto Toronto
Calgary Calgary Calgary
Adelaide Adelaide Adelaide
Sydney Sydney Sydney
Helsinki Perth Helsinki
Perth Helsinki Perth
Auckland Auckland Auckland
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Rank Aggregation: When Kendall Is Not Suitable

Click-through rate of a link: ratio of number of clicks to the
number of displays
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Figure : Click-through rates for 1st page of Google search results

In aggregating search results, top of the ranking is more important
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Generalizing the Kendall Distance

How should the axioms be changed?
- Let us remove the fourth axiom

@ Distance function is a pseudo-metric
© Relabeling of objects does not change distance.
Q d(o,7) =d(m,w) + d(w, o) iff w is between 7 and o

WO raniangs agree excepr on a seg E:E PeEEIiT

) )
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Generalizing the Kendall Distance

How should the axioms be changed?
- Let us remove the fourth axiom

@ Distance function is a pseudo-metric
© Relabeling of objects does not change distance.
Q d(o,7) =d(m,w) + d(w, o) iff w is between 7 and o

> raniungs agree excepr on a seg E:E i

) )

The solution is again Kendall 7!
Removing the fourth axiom is not sufficient.
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Why Modify the Third Axiom?

Lemma [F, Touri, Milenkovic]:

For complete rankings, fourth
axiom follows from the third
axiom.

Special case: n =3

Consider the distinct paths
between abc and cba.

(23) (12)
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Generalizing the Kendall Distance

Our relaxation of Kemeny's axioms:
@ Distance function is a pseudo-metric

© Relabeling of objects does not change distance.

Q d(o,7) =d(m,w) + d(w, o) H#fwis—between—rand—e for
some w between 7w and o if m and o disagree on more than
one pair of elements.

o ¥ ¥ } 1 esition—of

9 9

Unique solution: weighted Kendall 7 [F, Touri, Milenkovic, 2012]
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New Distance: Weighted Kendall Distance

Weighted Kendall distance:
minimum weight of
transforming one permutation
into the other using adjacent
transpositions where each
adjacent transposition has a
given weight.

Weight of transposition (if) is
denoted by ¢ (i, ).

d(abc, cba) =
2¢(2,3) +¢(1,2).
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Decreasing Weight Functions

@ Weighted Kendall distance | g | i | 2 |
between o and 7, = Melbourne | Melbourne |  Vienna
d(o,m) = ©(8,9) Vienna Vienna Melbourne

’ ! LA _ Vancouver | Vancouver | Vancouver

@ Weighted Kendall distance e e o e e
between o and m = Calgary Calgary Calgary
d(o,m) = ¢(1,2) Adelaide | Adelaide | Adelaide

o If we choose ¢(i,i +1) to | Svdney | Sydney | Sydney

oo o Helsinki Perth Helsinki
be decreasing in 7, then bl
CI(O' - ) - CI(O' - ) N Perth Helsinki Perth
) (I ) (2 Auckland Auckland Auckland

decreasing weight

function.
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Weighted Kendall Distance: Example |

Consider the set of rankings

M

Il
W DN
NN W D>
Bl W[IEL|WIN
=R BSIN W

The Kemeny aggregate is (4,2,3,1).

The optimum aggregate ranking for the weight function ¢ with
o(i,i+1) = (2/3)71,i € [4], equals (L,4,2,3).

A candidate with both strong showings and weak showings beats a
candidate with a rather average performance.
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Weighted Kendall Distance: Example Il

Consider the set of rankings

N|W| = |~
NN N
Wi Wl w

The Kemeny aggregates are (1,2,3),(2,1,3).

Weighted Kendall can be used to pick a unique solution: for any
strictly decreasing weight function the solution is unique, namely,
(1,2,3).
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Computing Weighted Kendall Distance

Computing Kendall 7 is straightforward: count the number of
disagreements.

How to compute the weighted Kendall distance for general weight
functions is not known, but is known for a very important case:

Monotonic weight function: ¢ is monotonic if p(i,i + 1) is
monotonic in /.

Theorem [F, Touri, Milenkovic]: Weighted Kendall distance with
monotonic weight can be computed in time O(n?).

Theorem [F, Milenkovic]: 2-approximation for weighted Kendall
distance with general weights can be computed in time O(n?).
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Weighted Transposition Distance

Instead of allowing only adjacent transpositions, we can allow all
transpositions

To each transposition (i j) assign weight (7, j).

Weighted Transposition Distance: Minimum weight of a sequence
of transpositions that transform one permutation to another.

Appropriate for modeling similarity among candidates:

©(Godfather |, Godfather 1)
< p(Godfather |, Goodfellas)
< p(Godfather I, Star Wars)
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Common Distance Functions

Several distance functions used for rank aggregation [Diaconis and
Graham 88] are special cases of the weighted transposition
distance:

@ Kendall's 7: K(m,0) = # of transpositions of adjacent ranks.
Equivalent to ¢k (i,i+1) = 1.
@ Spearman’s Footrule: F(m, o) =Y. 1(i) — o=1(i)|.
Equivalent to the path weight function pg(i,j) = |i — j|.
1

o Cayley's distance:
T(m,0) = # of transpositions
Equivalent to o7 (i,j) = 1.
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Weighted Transposition Distance: Example

Consider the votes listed in ¥,
1 2 3 4
PRES 3 2 1 4
4 1 3 2
Even and odd numbers represent different types of candidates:

. 1, ifi,j are both odd or both even,
e(i,j) =

2, else.

Votes are “diverse” : they alternate between odd and even numbers.

Kemeny aggregate is (1,3,2,4) : odd numbers ahead even numbers.

Aggregation using ¢ gives (1,2,3,4).
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Computing Weighted Transposition Distance

What is the distance of a single transposition from the identity?
Example: Distance of (red yellow) to identity

Find a path such that two copies of the path minus its heaviest
edge has minimum weight
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Computing Weighted Transposition Distance

@ 4-approximation algorithm for arbitrary weight functions in
O(n*) operations

@ 2-approximation algorithm if weight function is a metric, in
O(n*) operations

@ 2-approximation algorithm for path weight functions (e.g.
weighted Kendall) in O(n*) operations

@ Exact algorithms for metric-path weight functions (e.g.
weighted Spearman’s Footrule) in O(n?) operations.

See F.Farnoud and O.Milenkovic, “Sorting of permutations by cost-constrained
transpositions,” IT Transaction, 58(1):3-23, Jan. 2012.
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Rank Aggregation

Recall: Given voter rankings 01,0, ,0pm, the rank aggregation
problem can be stated as

m
7m* = arg min E dy(m,0i).
" im
1

For many distance functions, problem is NP-hard.

Alternative ways to find reasonable solutions:

@ Approximation: 2-approximation or 4-approximation

(depending on the properties of ) [Dwork et al. 2001] + local
search

@ Linear programming relaxation [Conitzer et al. 2006]

@ Heuristic Markov chain methods developed in the spirit of
PageRank [Dwork et al. 2001]
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Rank Aggregation: Approximation

For general weight function ¢, to find

m
7" = arg min Z do (7, 07)
s
i=1

we approximate d, by D = 3. f(71(i),071(i)) such that

(1/2)D(7m,0) < dy(m,0) < 2D(r,0).
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Rank Aggregation: Approximation

For general weight function ¢, to find

m
7" = arg min Z do (7, 07)
s
i=1

we approximate d, by D = 3. f(71(i),071(i)) such that
(1/2)D(m,0) < dy(m, 0) < 2D(, 0).

Using perfect min weight bipartite matching algorithms, can find

m
' = arg mﬂin Z D(m,0;)
i=1

exactly, and show that 7, d (7', 07) <437, do(7*, 07).
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Rank Aggregation: Approximation

For general weight function ¢, to find

m
7" = arg min Z do (7, 07)
s
i=1

we approximate d, by D = 3. f(71(i),071(i)) such that
(1/2)D(m,0) < dy(m, 0) < 2D(, 0).

Using perfect min weight bipartite matching algorithms, can find

m
' = arg mﬂin Z D(m,0;)
i=1

exactly, and show that 7, d (7', 07) <437, do(7*, 07).

Search for a local optimum starting from 7’
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Rank Aggregation: Linear Programming Relaxation

Kendall 7 distance = number of disagreements
cjj is the number of voters that prefer / to j
mjj equals 1 if the aggregate 7 prefers j to j

Aggregation problem as integer program [Conitzer et al, 2006]:

minimize ch,-w,-j
i
subject to 7 + ;i =1
i+ Wik + T < 2
m;j € {0,1}

If we relax the condition 7j; € {0,1} to 0 < mjj < 1, we have a
linear program
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Rank Aggregation: Linear Programming Relaxation

For weights that decrease arithmetically, we can do the same.
mijk equals 1 if the aggregate 7 prefers i to j and j to k.
ajj measures the disagreement of voters with ordering (ijk).

Aggregation problem as integer program:
minimize Za,-jkﬂ,-jk
i,k
subject to mjjx + Wik + -+ + T =1
Tijk + Tikj + Tkij = Tij
mijk € {0,1}

T = Z #voters with preference (rst) * d(rst, ijk)

rst

Again, removing integrality condition leads to a linear program.
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Rank Aggregation: Markov Chain Methods

Based on ideas behind PageRank and work by Dwork et.al., 2001.
@ Form a Markov chain with nodes indexed by candidates, and
transition probabilities “determined” by voters.
@ If ais preferred to b by large number of voters, the transition
probability from a to b should be high.
@ The equilibrium distribution reflects preference order of
candidates.

How should a Markov chain approach be designed for non-uniform
weights?

See F, Touri, Milenkovic, “Nonuniform Vote Aggregation Algorithms,” SPCOM

2012.
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Rank Aggregation: Markov Chain Methods

The probability of going from i to j, where j is ranked higher,
depends on sum of the weights of adjacent transpositions between
the positions of a and b:

io—1
BU(O') = max Zh:/ Sp(h7 h I 1)

ljo <I<iy iy — 1

)

appropriately normalized.

For votes abc, abc, bca:

See F, Touri, Milenkovic, “Nonuniform Vote Aggregation Algorithms,” SPCOM
2012.
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Thank you!
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