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Abstract

Summary: Gene prioritization refers to a family of computational techniques for inferring disease

genes through a set of training genes and carefully chosen similarity criteria. Test genes are scored

based on their average similarity to the training set, and the rankings of genes under various simi-

larity criteria are aggregated via statistical methods. The contributions of our work are threefold: (i)

first, based on the realization that there is no unique way to define an optimal aggregate for rank-

ings, we investigate the predictive quality of a number of new aggregation methods and known

fusion techniques from machine learning and social choice theory. Within this context, we quantify

the influence of the number of training genes and similarity criteria on the diagnostic quality of the

aggregate and perform in-depth cross-validation studies; (ii) second, we propose a new approach

to genomic data aggregation, termed HyDRA (Hybrid Distance-score Rank Aggregation), which

combines the advantages of score-based and combinatorial aggregation techniques. We also pro-

pose incorporating a new top-versus-bottom (TvB) weighting feature into the hybrid schemes. The

TvB feature ensures that aggregates are more reliable at the top of the list, rather than at the

bottom, since only top candidates are tested experimentally; (iii) third, we propose an iterative pro-

cedure for gene discovery that operates via successful augmentation of the set of training genes by

genes discovered in previous rounds, checked for consistency.

Motivation: Fundamental results from social choice theory, political and computer sciences, and

statistics have shown that there exists no consistent, fair and unique way to aggregate rankings.

Instead, one has to decide on an aggregation approach using predefined set of desirable properties

for the aggregate. The aggregation methods fall into two categories, score- and distance-based

approaches, each of which has its own drawbacks and advantages. This work is motivated by the

observation that merging these two techniques in a computationally efficient manner, and by

incorporating additional constraints, one can ensure that the predictive quality of the resulting

aggregation algorithm is very high.

Results: We tested HyDRA on a number of gene sets, including autism, breast cancer, colorectal

cancer, endometriosis, ischaemic stroke, leukemia, lymphoma and osteoarthritis. Furthermore, we

performed iterative gene discovery for glioblastoma, meningioma and breast cancer, using a se-

quentially augmented list of training genes related to the Turcot syndrome, Li-Fraumeni condition

and other diseases. The methods outperform state-of-the-art software tools such as ToppGene and

Endeavour. Despite this finding, we recommend as best practice to take the union of top-ranked

items produced by different methods for the final aggregated list.

Availability and implementation: The HyDRA software may be downloaded from: http://web.

engr.illinois.edu/�mkim158/HyDRA.zip
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1 Introduction

Identification of genes that predispose an individual to a disease is a

problem of great interest in medical sciences and systems biology

(Adie et al., 2006). The most accurate and powerful methods used

for identification are experimental in nature, involving normal and

disease samples (Cardon et al., 2001). Experiments are time con-

suming and costly, complicated by the fact that typically, multiple

genes have to be jointly mutated to trigger the onset of a disease.

Given the large number of human genes (�25 000), testing even rela-

tively small subsets of pairs of candidate genes is prohibitively ex-

pensive (Risch and Merikangas, 1996).

To mitigate this issue, a set of predictive analytical and computa-

tional methods have been proposed under the collective name gene

prioritization techniques. Gene prioritization refers to the complex

procedure of ranking genes according to their likelihoods of being

linked to a certain disease. The likelihood function is computed

based on multiple sources of evidence, such as sequence similarity,

linkage analysis, gene annotation, functionality and expression ac-

tivity, gene product attributes—all determined with respect to a set

of training genes.

A wide range of tools has been developed for identifying genes

involved in a disease (Köhler et al., 2008; Kolde et al., 2012; Pihur

et al., 2009), as surveyed (Tiffin et al., 2006). Existing software in-

cludes techniques based on network information, such as GUILDify

(Guney et al., 2014) and GeneMANIA (Warde-Farley et al., 2010),

data mining and machine learning-based approaches as described in

(Perez-Iratxeta et al., 2002), POCUS (Turner et al., 2003) SUSPECTS

(Adie et al., 2006) and (Yu et al., 2008), and methods using statistical

analysis, including Endeavour (Aerts et al., 2006; De Bie et al., 2007),

ToppGene (Chen et al., 2009) and NetworkPrioritizer (Kacprowski

et al., 2013). Here, we focus on statistical approaches coupled with

new combinatorial algorithms for gene prioritization, and emphasize

one aspect of the prioritization procedure: rank aggregation.

The problem of aggregating rankings of distinct objects or enti-

ties provided by a number of experts, voters or search engines has a

rich history (Fishburn, 1970). One of the key findings is that various

voting paradoxes arise when more than three candidates are to be

ranked: it is frequently possible not to have a candidate that wins all

pairwise competitions (the Condorcet paradox) and it is theoretic-

ally impossible to guarantee the existence of an aggregate solution

that meets certain predefined set of criteria [such as those imposed

by Arrow’s impossibility theorem (Fishburn, 1970)]. These issues

carry over to aggregation methods used for gene discovery, and as a

result, the rank-ordered lists of genes heavily depend on the particu-

lar aggregation method used.

Two families of methods have found wide applications in rank

aggregation: combinatorial methods (including score- and distance-

based approaches) (Kemeny, 1959) and statistical methods. In the

bioinformatics literature, the aggregation methods of choice are stat-

istical in nature, relying on pre-specified hypotheses to evaluate the

distribution of the gene rankings. One of the earliest prioritization

softwares, Endeavour, uses the Q-statistics for multiple significance

testing, and measures the minimum false discovery rate at which a

test may be called significant. In particular, rankings based on differ-

ent similarity criteria are combined via order statistics approaches.

For this purpose, one uses the rank ratio (normalized ranking) of a

gene g for m different criteria, r1ðgÞ;. . .; rmðgÞ and recursively com-

putes the Q-value, defined as

Qiðr1ðgÞ;. . .; rmðgÞÞ ¼ m!

ðr1ðgÞ

0

ðr2ðgÞ

s1

. . .

ðrmðgÞ

sm�1

dsm
dsm�1

. . .ds1
:

Post-processed Q-values are used to create the resulting ranking

of genes. The drawbacks of the method are that it is based on a null

hypothesis that is difficult to verify in practice, and that it is compu-

tationally expensive, as it involves evaluating an m-fold integral. To

enable efficient scaling of the method, Endeavour resorts to approxi-

mating the Q-integral. The influence of the approximation errors on

the final ranking is hard to assess, as small changes in scores may re-

sult in significant changes of the aggregate orderings.

Likewise, ToppGene uses a well-known statistical approach,

called the Fisher v2 method. It first determines the p-values of

similarity score indexed by j, denoted by p(j), for j ¼ 1;. . .;m. The

p-values are computed through multiple preprocessing stages,

involving estimation of the information contents (i.e. weights) of

annotation terms, setting-up a similarity criteria based on Sugeno

fuzzy measures (i.e. non-additive measures) (Popescu et al., 2006),

and performing meta-testing. The use of fuzzy measures ensures that

all similarities are non-negative. Then, under the hypothesis of

independent tests, ToppGene uses Fisher’s inverse v2 result, stating

that �2
Xm

j¼1
logpðjÞ ! v2ð2mÞ. Here, v2 (2m) stands for the chi-

square distribution with 2 m degrees of freedom. The result is

asymptotic in nature, and based on possibly impractical independ-

ence assumptions.

A number of methods, and additive scoring methods in particu-

lar, have the drawback that they tacitly or implicitly rely on the as-

sumption that (i) only the total score matters, and the balance

between the number of criteria that highly ranked the gene and

those that ranked it very low is irrelevant. For example, outlier rank-

ings may reduce the overall ranking of a gene to the point that it is

not considered a disease gene candidate, while the outlier itself may

be a problematic criterion. To illustrate this observation, consider a

gene that was ranked 1st, 2nd, 1st, 20th by four criteria. At the

same time, consider another gene that was ranked 6th by all four cri-

teria. It may be unclear which of these two genes is more likely to be

involved in the disease, given that additive score methods would

rank the two genes equally (as one has (1þ2þ1þ20)/4¼6).

Nevertheless, it appears reasonable to assume that the first candi-

date is a more reliable choice for a disease gene, as it had a very high

ranking for three out of four criteria; and (ii) no distinction is made

about the accuracy of ranking genes in any part of the list; i.e. the

aggregate ranking has to be uniformly accurate at the top, middle

and bottom of the list. Clearly, neither of the two aforementioned

assumptions is justified in the gene prioritization process: there are

many instances where genes similar only under a few criteria (such

as sequence similarity or linkage distance) are involved in the same

disease pathway. Furthermore, as the goal of prioritization is to pro-

duce a list of genes to be experimentally tested, only the highest

ranked candidate genes are important and should have higher accur-

acy than other genes in the list. In addition, most known aggregation

methods are highly sensitive to outliers and ranking errors.

We propose a new approach to gene prioritization by introduc-

ing a number of novel aggregation paradigms, which we collectively
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refer to as HyDRA (Hybrid Distance-score Rank Aggregation). The

gist of HyDRA is to combine combinatorial approaches that

have universal axiomatic underpinnings with statistical evidence

pertaining to the accuracy of individual rankings. Our preferred

distance measure for combinatorial aggregation is the Kendall

distance (Kendall, 1938), which counts the number of pairwise

disagreement between two rankings, and was axiomatically postu-

lated by Kemeny (1959). The Kendall distance is closely related to

the Kendall rank correlation coefficient (Dwork et al., 2001;

Kendall, 1948). As such, it has many properties useful for gene

prioritization, such as monotonicity, reinforcement and Pareto

efficiency (Thanassoulis, 2001). The Kendall distance can be

generalized to take into account positional relevance of items, as

was done in our companion article (Farnoud et al., 2012, 2014).

There, it was shown that by assigning weights to pairs of positions

in rankings, it is possible to (i) eliminate negative outliers from the

aggregation process, (ii) include quantitative data into the aggregate

and (iii) ensure higher accuracy at the top of the ranking than at the

bottom.

The contributions of this work are threefold. First, we introduce

new weighted distance measures, where we compute the weights

based on statistical evidence of a function of the difference between

p-values of adjacently ranked items. Aggregation weights based on

statistical evidence improve the accuracy of the combinatorial aggre-

gation procedure and make them more robust to estimation errors.

Second, we describe how to scale the weights obtained based on

statistical evidence by a decreasing sequence of TvB (Top versus

Bottom) multipliers that ensure even higher accuracy at the top of

the aggregated list. As aggregation under the Kendall metric is

NP-hard (Non-deterministic Polynomial-time hard) (Bartholdi et al.,

1989), and the same is true of the weighted Kendall metric, we

propose a 2-approximation method that is stable under small per-

turbations. Aggregation is accomplished via weighted bipartite

matching, such as the Hungarian algorithm and derivatives thereof

(Kuhn, 1955). Third, we test HyDRA within two operational scen-

arios: cross-validation and disease gene discovery. In the former

case, we assess the performance of different hybrid methods with re-

spect to the choice of the weighting function and different number

of test and training genes. In the latter case, we adapt aggregation

methods to gene discovery via a new iterative re-ranking procedure.

2 Systems and methods

In our subsequent exposition, we use Greek lower case letters to

denote complete linear orders (permutations), and unless explicitly

mentioned otherwise, our findings also hold for partial (incomplete)

permutations. Latin lower case letters are reserved for score

vectors or scalar scores, and which of these entities we refer to will

be clear from the context. The number of test genes equals n,

while the number of similarity criteria equals m. Throughout the

article, we also use ½k� to denote the set f1;. . .; kg and Sn to denote

the set of all permutations on n elements—the symmetric group of

order n!.

For a permutation r ¼ ðrð1Þ;. . .;rðnÞÞ, the rank of element i in

r, rankrðiÞ, equals r�1ðiÞ, where r�1 denotes the inverse permuta-

tion of r. For a vector of scores x ¼ ðxðiÞÞni¼1 2 Rn, rx represents a

permutation describing the scores in decreasing order, i.e.

rxðiÞ ¼ argmax k2Ti
xðkÞ, where Ti is defined recursively as

Ti ¼ Ti�1 n rxðiÞ, with T0 ¼ ½n�. For example, if x¼ (2.5, 3.8, 1.1,

0.7), then rx ¼ ð2; 1;3; 4Þ. Note that if p is a vector of p-values,

higher scores are associated with smaller p-values, so that argmax

should be replaced by argmin.

The terms gene and element are used interchangeably, and

each permutation is tacitly assumed to be produced by one

similarity criteria. For a set of permutations R ¼ fr1;. . .;rmg;
ri ¼ ðrið1Þ;. . .; riðnÞÞ, an aggregate permutation r� is a permutation

that optimally represents the rankings in R. Combinatorial aggre-

gates may be obtained using score- and distance-based methods.

Note that score and distance-based methods do not make use of

quantitative information, such as, e.g., p-values (for the case of gene

prioritization) or ratings (for the case of social choice theory and

recommender systems). In what follows, we briefly describe score

and distance-based methods and introduce their hybrid counter-

parts, which allow to integrate p-values and relevance constraints

into combinatorial aggregation approaches.

2.1 Score-based methods
Score-based methods are the simplest and computationally least

demanding techniques for rank aggregation. As inputs, they take a

set of permutations or partial permutations, R ¼ fr1;. . .;rmg;
ri ¼ ðrið1Þ;. . .; riðnÞÞ. For each permutation ri 2 R, the scoring rule

awards s(ri(1), i) points to element ri(1), s(ri(2), i) points to element

ri(2), and so on. For a fixed i, the scores are non-increasing func-

tions of their first index. Each element k 2 ½n� is assigned a cumula-

tive score equal to
Xm

j¼1
sðk; jÞ. The simplest scoring method is

Borda’s count, for which sðk; jÞ ¼ n� kþ 1 independent on j.

The Borda count and related scoring rules exclusively use pos-

itional information in order to provide an aggregate ranking.

Ignoring actual p-values (ratings) may lead to aggregation problems,

as illustrated by the next example.

Example 1: Assume that n¼5 elements were rated according to

x ¼ ð7:0;7:01;0:2;0:45; 7:001Þ. The ranking induced by this rating

equals rx ¼ ð2;5; 1; 4;3Þ, indicating that element 2 received the

highest rating, element 5 received the second highest rating and so

on. According to the Borda rule, element 2 receives 5 points, element

5 receives 4 points, etc. Despite the fact that candidates 2 and 1 are

almost tied with scores of 7.01 and 7.0, and that the difference in

their scores may be attributed to computational imprecision, elem-

ent 2 receives 5 points while element 1 receives only 3 points. As a

result, very small differences in ratings may result in large differ-

ences in Borda scores.

One way to approach the problem is to quantize the score and

work with rankings with ties, instead of full linear orders (i.e. per-

mutations). Elements tied in their rank receive the same number of

points in the generalized Borda scheme. A preferred alternative,

which we introduce in this work, is the Hybrid Borda method.

Let p(i, j) denote the p-value of gene i computed under similarity

criteria j; j ¼ 1;. . .;m. The cumulative score of element i in the hy-

brid Borda setting is computed as

Si ¼
Xm
j¼1

Xm

k 6¼i
pðk; jÞ1fpðk;jÞ�pði;jÞg

pði; jÞ

0
@

1
A:

The overall aggregate is obtained by ordering S in a descending

order. It is straightforward to see that the previous score function

extends Borda method in so far that it scores an element (gene) ac-

cording to the total score of elements ranked lower than the element.

Recall that in Borda’s method, the element ranked i is awarded n� i

þ1 points, as n� iþ 1 elements are ranked below it, each receiving

the same score 1. In our Hybrid Borda method, each element is
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awarded a score in accordance with the p-values of elements ranked

below it.

Example 2: Let n¼4 and m¼2, where the two ratings equal

to p1 ¼ ð0:2;0:3;0:01;0:12Þ and p2 ¼ ð0:1; 0:4; 0:2; 0:35Þ. The

Hybrid Borda scores Si for genes i ¼ 1;2; 3; 4 are computed as

S1 ¼ 0:3=0:2þ ð0:4þ 0:2þ 0:35Þ=0:1 ¼ 11, S2¼0, S3 ¼ ð0:2þ 0:3

þ0:12Þ=0:01þ ð0:4þ 0:35Þ=0:2 ¼ 65:75 and S4 ¼ ð0:2þ 0:3Þ=0:12

þ 0:4=0:35 ¼ 5:3. By ordering the values Si in a descending manner,

we obtain the overall aggregate rHB ¼ ð3;1; 4; 2Þ.
The hybrid Borda method can be extended further by adding a

TvB feature, resulting in the Weighted hybrid Borda method. This is

accomplished by including increasing (multiplier) weights into

the score aggregates, thus stressing the top of the list more than the

bottom. More precisely, the score of gene i is computed as:

Si ¼
Xm
j¼1

X
k6¼i

wmðk; jÞpðk; jÞ1fpðk;jÞ�pði;jÞg

wmði; jÞpði; jÞ

0
@

1
A:

where one simple choice for the weight multipliers that provides

good empirical performance equals

wmði; jÞ ¼ 1

n� rankrj ðiÞ þ 1
:

2.2 Distance-based methods
Another common approach to rank aggregation is distance-based

rank aggregation. As before, assume that one is given a set of permu-

tations R ¼ fr1;. . .;rmg. For a given distance function between two

permutations r and p, dðr;pÞ, aggregation reduces to

p ¼ arg minr

Xm
i¼1

dðr;riÞ

The aggregate p is frequently referred to as the median of the

permutations, and is illustrated in Figure 1.

One of the most important features of distance-based approaches

is the choice of the distance function. Table 1 lists two of the most

frequently used distances, the Kendall tau distance and the

Spearman footrule. As may be seen from the table, the distance

measures are combinatorial in nature, and do not account for scores

or p-values. Furthermore, as already mentioned in the introduction,

it is known that aggregation under the Kendall metric is computa-

tionally hard. Nevertheless, there exists a number of techniques

which provide provable approximation guarantees for the aggre-

gate, including the weighted Bipartite Graph Matching (WBGM)

method (using the fact that the Spearman distance aggregate is a 2-

approximation for the Kendall aggregate), linear programing (LP)

relaxation and Page Rank/Markov chain (PR) methods (Dwork

et al., 2001; Farnoud et al., 2012; Raisali et al., 2013).

The Kendall distance also does not take into account the fact

that the top of a list is more important than the remainder of the list.

To overcome this problem, we introduced the notion of weighted

Kendall distances, where each adjacent swap is assigned a cost, and

where the cost is higher at the top of a list. This ensures that in an

aggregate, strong showings of candidates are emphasized compared

with their weaker showings, accounting for the fact that it is often

sufficient to have strong similarity with respect to only a subset of

criteria. Furthermore, such weights ensure that higher importance is

paid to the top of the aggregate ranking.

The idea behind the weighted Kendall distance dw is to compute

this distance as the shortest path in a graph describing swap relation-

ships between permutations. The key concepts are illustrated in

Figures 2 and 3, where each edge is assigned a length proportional to

its weight W. This weight depends on the swap being made at the top

or at some other position in the ranking. Given that it is computation-

ally demanding to aggregate under the weighted Kendall distance, we

use a specialized approximation function Dwðr; hÞ for dw, of the form

Dwðr; hÞ ¼
Xn

i¼1
wðr�1ðiÞ : h�1ðiÞÞ; (1)

where

wðk : lÞ ¼

Xl�1

h¼k
Wðh;hþ 1Þ; if k < l;Xk�1

h¼l
Wðh;hþ 1Þ; if k > l;

0; if k ¼ l;

8>>>><
>>>>:

(2)

denotes the sum of the weights of edges Wð�Þ representing adjacent

transpositions ðk kþ 1Þ; ðkþ 1 kþ 2Þ;. . .; ðl � 1 lÞ; if k< l, the sum

of the weights of edges Wð�Þ representing adjacent transpositions

ðl l þ 1Þ; ðl þ 1 l þ 2Þ;. . .; ðk� 1 kÞ, if l<k, and 0, if k¼ l.

Example 3: Suppose that one is given four rankings, (1, 2, 3),

(1, 2, 3), (3, 2, 1) and (2, 1, 3). There are two optimal aggregates

according to the Kendall tau distance, namely (1, 2, 3) and (2, 1, 3).

Both have cumulative distance four from the set of given

permutations. If the transposition weights are non-uniform, say such

that Wð12Þ>Wð23Þ, the solution becomes unique and equal to

(1, 2, 3). If the last ranking is changed from (2, 1, 3) to (2, 3, 1),

exactly three permutations are optimal from the perspective of

Kendall tau aggregation: (1, 2, 3), (2, 1, 3) and (2, 3, 1). These three

solutions give widely different predictions of what one should

consider the top candidate. Nevertheless, by choosing once

more Wð12Þ>Wð23Þ the solution becomes unique and equal to

(1, 2, 3).

It can be shown that for any non-negative weight function w,

and for two permutations r and h, one has

1=2Dwðr; hÞ�dwðp; rÞ�Dwðr; hÞ

Fig. 1. Four rankings: r1; r2; r3; r4 and their aggregate (median) ranking p

Table 1. Two frequently used distance measures for permutations,

accounting for swaps or element-wise differences

Distance Measurement Example

Spearman’s

footrule

Sum of differences of

ranks of elements.

dFðabc; cbaÞ ¼ 2þ 0þ 2 ¼ 4

Kendall Minimum number of

adjacent swaps of

entries for transforming

one ranking into another.

dKðabc; cbaÞ ¼ 3

In the second example, the Kendall tau distance between the permutation

r1 ¼ ða; b; cÞ and r2 ¼ ðc; b; aÞ equals 3: one first swaps elements at positions

1 and 2 to get (b, a, c), then elements at positions 2 and 3 to get (b, c, a), and

finally elements at positions 1 and 2 to get r2 ¼ ðc; b; aÞ. All swaps contribute

the same weight (one) to the distance.
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In a companion article (Farnoud et al., 2012), we presented exten-

sions of the WBGM and PR aggregation methods for weighted Kendall

distances. Here, we will pursue the WBGM framework, and propose a

new method to compute the weights Wð�Þ of edges (swaps) based on

the p-values of the genes within each similarity criteria ranking. We

refer to the resulting weighted model as the Hybrid Kendall method.

To start, arrange the p-values of all genes based on all similarity-

criteria into an n	m matrix P. Next, rearrange the p-values

of genes for each criteria in an increasing order, and denote the re-

sultingrearranged matrix by P� ¼ ðp�ði; jÞÞ. We use the

following ðn� 1Þ 	m swap weight matrixW, with entries

Wði; jÞ ¼ c
P�ðiþ 1; jÞ � P�ði; jÞ

P�ðiþ 1; jÞ

� �
	 dn�i;

indicating how much it costs to swap positions i and iþ1 for criteria

j. The parameters c, d are constants independent of n and m, used

for normalization and for emphasizing the TvB constraint, respect-

ively. For our simulations, we set c¼10 and d¼1.05, as these

choices provided good empirical performance on synthetic data. The

swap matrix assigns high weight to the top of the list.

To compute the aggregate based on the approximate dis-

tance Dwðh;rÞ, we only need to accumulate each of the contribu-

tions from the training permutations in R. This may be

achieved by using a n	n total cost matrix C, with entry C(i, j) indi-

cating how much it would ‘cost’ for gene i to be ranked at position j:

Cði; jÞ ¼ 1

m

Xm
k¼1

Xmaxðj;rpk
ðiÞÞ�1

l¼minðj;rpk
ðiÞÞ
Wðl;kÞ

The total cost matrix C is the input to the WBGM algorithm,

where C(i, j) denotes the weight of an edge connecting gene i with

position j (see Fig. 4 for an example of the bipartite graph, with the

left-hand side nodes denoting genes and the right-hand side nodes

denoting their possible positions; the minimum weight matching is

represented by bold edges). To find the minimum cost solution, or

the maximum weight matching, we used the classical Hungarian al-

gorithm (Kuhn, 1955) implemented in (Melin, 2006).

Example 4: Let n¼4 and m¼2, where the two ratings equal to

p1 ¼ ð0:2; 0:3; 0:01;0:12Þ and p2 ¼ ð0:1; 0:4; 0:2; 0:35Þ. Then

P� ¼

0:01 0:1

0:12 0:2

0:2 0:35

0:3 0:4

2
666664

3
777775; W ¼

10:61 5:79

4:41 4:73

3:5 1:31

2
664

3
775;

C ¼

7:51 5:1 5:23 7:67

15:18 6:98 2:4 0

2:9 5:3 9:88 12:28

10:57 2:37 2:2 4:61

2
666664

3
777775:

For example, since gene 3 was ranked 1st and 2nd by the two

criteria, Cð3; 3Þ ¼ 1=2ð10:61þ 4:41Þ þ 1=2ð4:73Þ ¼ 9:88. The min-

imum cost solution of the matching with cost matrix C, based on

the Hungarian algorithm yields the aggregate rHK ¼ ð3; 1; 4;2Þ.

2.3 The Lovász-Bregman divergence method
A previously reported distance measure represents another possible

mean for performing HyDRA. The so called Lovász-Bregman

method (Iyer and Bilmes, 2013) calls for a distance measure between

real-valued vectors x 2 Rn
�0 and permutations.

To define the Lovász-Bregman divergence that acts as a distance

proxy between rankings and ratings, we start with a submodular

set-function, i.e. a function f such that for a finite ground set V,

f : 2V ! R, and for all S;T 
 V, it holds f ðSÞ þ f ðTÞ�
f ðS [ TÞ þ f ðS \ TÞ. The Lovász extension of f, fL(x), equals

f LðxÞ ¼
Xn

i¼1

xðrxðiÞÞ f ðSrx

j Þ � f ðSrx

j�1Þ
h i

;

where Srx

j denotes the set frxð1Þ;. . .; rxðjÞg. Note that under some

mild conditions, the Lovász extension is convex. Let us next define

the differential of f as

hf
rx
ðrxðjÞÞ ¼ f ðSrx

j Þ � f ðSrx

j�1Þ

Then the Lovász-Bregman divergence is defined via the dot product

drðxjjrÞ ¼ x � ðhf
rx
� hf

rÞ

Despite its seemingly complex expression, the Lovász-Bregman di-

vergence allows for closed form aggregation for a large class

of submodular functions f. The optimal aggregate reduces to the

Fig. 2. The Kendall distance is the weight of the shortest path between two

vertices labeled by two permutations, with each edge having length (weight)

one. Edges are labeled by the adjacent swaps used to move between the

vertex labels. For example, the two vertices labeled by acb and cab are

connected via an edge bearing the label < 12 >, indicating that the two

permutations differ in one swap involving the first and second element

Fig. 3. The weighted Kendall distance is the weight of the shortest path

between two permutations, with edges having possibly different lengths

(weights). Edges are labeled by the adjacent swaps used to move along the

vertices

Fig. 4. A matching in a weighted bipartite graph.
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ranking induced by the sum of real-valued rating vectors, ordered in

a decreasing manner.

If, as before, p(i, j) denotes the p-value of gene i under criteria j,

we define the normalized Lovász-Bregman score for gene i as

LðiÞ ¼
Xm
j¼1

pði; jÞ
1
n

Xn

i¼1
pði; jÞ

;

where the sum of p-values over criteria is normalized by the average

of the p-values for each criterion. The aggregate equals rL, where

L ¼ ðLðiÞÞni¼1.

Example 5: Let n¼4 and m¼2, where the two ratings equal to p1

¼ ð0:2; 0:3; 0:01; 0:12Þ and p2 ¼ ð0:1;0:4;0:2;0:35Þ. Note that

1=n
Xn

i¼1
pði; 1Þ ¼ 1=4ð0:2þ 0:3þ 0:01þ 0:12Þ ¼ 0:1575, and 1=nXn

i¼1
pði;2Þ ¼ 1=4ð0:1þ 0:4þ 0:2þ 0:35Þ ¼ 0:2625. The Lovász-

Bregman scores LðiÞ; i ¼ 1; 2; 3;4, equal L 1ð Þ¼0.2/0.1575þ0.1/

0.2625¼1.65, L 2ð Þ¼0.3/0.1575þ0.4/0.2625¼3.43, L 3ð Þ¼0.01/

0.1575þ0.2/0.2625¼0.83, L 4ð Þ¼0.12/0.1575þ0.35/0.2625¼2.1.

By ordering LðiÞ in an ascending manner, one arrives at

rLB ¼ ð3;1;4; 2Þ.

3 Algorithms and implementation

We now turn our attention to testing different aggregation methods

on lists of p-values generated by Endeavour and ToppGene. The

aforementioned methods rely on a set of training genes known to be

involved in a disease. The test genes are compared with all the train-

ing genes according to a set of similarity criteria, and the p-value of

each comparison is computed in the process. For example, if the cri-

terion is sequence similarity, the p-value reflects the z-value, describ-

ing the number of standard deviations above the mean for a given

observation. Given the p-values, the question of interest becomes

how to aggregate them into one ranking. Computing the p-values is

a routine procedure, and the challenge of the prioritization process

is to most meaningfully and efficiently perform the aggregation step.

There are two settings in which one can use the aggregation

algorithms. The first setting is cross-validation, a verification step

that compares the output of an aggregation algorithm with existing,

validated knowledge. This mode of operation is aimed at discover-

ing shortcomings and advantages of different methods. In the

second setting, termed gene discovery, the aim is to identify sets

of genes implicated in a disease which are not included in the data-

base. Clearly, cross-validation studies are necessary first steps in

gene discovery procedures, as they explain best aggregation strat-

egies for different datasets and different similarity and training

conditions.

For both methods, a list of genes involved in a certain disease

(referred to as onset genes) was obtained from the publicly available

databases Online Mendelian inheritance in Man (OMIM) (Hamosh

et al., 2005) and/or the Genetic Association Database (GAD)

(Becker et al., 2004). Both of these sources rely on the literature for

genetic association for vast number of diseases, but OMIM typically

provides a more conservative (i.e. shorter) list than the GAD. Onset

genes were tested along with random genes, obtained by randomly

permuting 19, 231 human genes in the GeneCards database (Safran

et al., 2002), and retaining the top portion of the list according to

the chosen number of test genes.

3.1 Cross-validation
We performed a systematic, comparative performance analysis of

the ToppGene and Endeavour aggregation algorithms and the newly

proposed hybrid methods. Given a list of r onset genes, we first se-

lected t onset genes to serve as target genes (henceforth referred to as

target onset genes) for validation; we used the remaining r�t onset

genes as training genes. Of the n test genes, n�t genes were selected

randomly from GeneCards (Safran et al., 2002). Our cross-valid-

ation procedure closely followed that of Endeavour and ToppGene:

we fixed t¼1, and tested all r individual genes from the pool of

onset genes, and then averaged the results. Averaging was performed

as follows: we took target onset genes one-by-one and averaged their

rankings over
r

t

 !
t¼1

¼ r experiments. Note that in principle, one

may also choose t�2; in this case, the lowest ranking of the t genes

(i.e. the highest positional value that a target onset gene assumed)

should serve as a good measure of performance. One would then

proceed to average the resulting rankings over
r

t

 !
experiments,

producing a ‘worst case scenario’ for ranking of target onset genes.

For fair comparison with Endeavour and ToppGene, we only used

the first described method with t¼1 and the same set of p-values as

inputs. As will be described in subsequent sections, we used t�2 for

gene discovery procedures.

3.2 Gene discovery
The ultimate goal of gene prioritization is to discover genes that are

likely to be involved in a disease without having any prior experi-

mental knowledge about their role. We describe next a new, itera-

tive gene discovery method. The method uses aggregation

techniques or combinations of aggregation techniques deemed to be

most effective in the cross-validation study.

Given a certain disease with r onset genes, we first identify s sus-

pect genes. Suspect genes are genes that are known to be involved in

diseases related to that under study (as an example, a suspect gene

for glioblastoma may be a gene known to be implicated in another

form of brain cancer, say meningioma), but have not been tested in

Algorithm 1: Gene Discovery

Input: Set of onset genes, O ¼ fo1;o2;. . .;org, set of sus-

pect genes, S ¼ fs1; s2;. . .; ssg, number of test genes,

n 2 Zþ, a cut-off threshold, s 2 Zþ, and the number of

allowed iterations, l 2 Z

Output: Set of potential disease genes, denoted by A

Initialization:

• Set i¼1, A ¼ ;; R ¼ fr1; r2;. . .; rn�sg – a set of ran-

domly chosen genes, training set TR¼O, test set

TS ¼ S [ R

For i � l do

1. Run a gene prioritization suite using the training set TR,

test set TS, and m similarity criteria

2. Run k aggregation methods on the p-values produced in

Step 1, and denote the resulting rankings by r1;. . .;rk

3. Let B ¼ fr1ð1Þ;. . .; r1ðsÞg [ � � � [ frkð1Þ;. . .;rkðsÞg
4. A A [ B; TR TR [ B; S SnB
5. TS S [ R0; R0 ¼ set of n� jSj randomly chosen genes

6. i iþ 1

End

Return A

6 M.Kim et al.

L(1)
L(2)
L
(3)
L(4)
. 
I
p
u
to 
p
p
p
p
,
V
u
 &ndash; 
 &ndash; 
,
``
''
p
D
1


this possible role. Suspect genes are processed in an iterative manner,

as illustrated in Algorithm 1. In the first iteration, r onset genes are

used for training, and s suspect genes, along with n � s randomly se-

lected genes, are used as test genes. From the aggregate results pro-

vided by different hybrid algorithms, we selected q top-ranked genes

and moved them to the set of training genes and simultaneously

declared them as potential disease genes. The choice for the param-

eter q is governed by the number of training and test genes, as well

as the empirical performance of the aggregation methods observed

during multiple rounds of testing. The second iteration starts with

rþq training genes, s � q suspect genes, and n � s þ q randomly se-

lected genes; the procedure is repeated until a predetermined stop-

ping criteria is met, such as the size of the set of potential disease

genes exceeding a given threshold.

4 Results

We performed extensive cross-validation studies for eight diseases

using both Endeavour- and ToppGene-generated p-values. Our re-

sults indicate that the similarity criteria that exhibits the strongest

influence on the performance of the ToppGene and the Endeavour

method is the PubMed and literature criteria, which award genes ac-

cording to their citations in the disease related publications. In order

to explore this issue further, we performed additional cross-valid-

ation studies for both ToppGene and Endeavour datasets to examine

how exclusion of the literature criteria changes the performance of

the two methods as well as our hybrid schemes. Our results reveal

that HyDRA aggregation methods outperform Endeavour and

ToppGene procedures for a majority of quality criteria, but they

also highlight that each method offers unique advantages in priori-

tization for some specific diseases.

For gene discovery, we again used Endeavour and ToppGene

p-values, and investigated three diseases—glioblastoma, meningi-

oma and breast cancer—including all criteria available. We recom-

mend as best practice a nested aggregation method, i.e. aggregating

the aggregates of Endeavour, HyDRA and ToppGene, coupled with

iterative training set augmentation.

4.1 Cross-validation
Cross-validation for HyDRA methods was performed on autism,

breast cancer, colorectal cancer, endometriosis, ischaemic stroke, leu-

kemia, lymphoma and osteoarthritis. Table 2 provides the summary of

our results, pertaining to the average rank of one selected target gene.

Table 2 illustrates that HyDRA methods offer optimal performance in

11 out of 16 tests when compared with ToppGene aggregates, and in

12 out of 16 cases when compared with Endeavour aggregates. In the

former case, the Weighted Hybrid Kendall method outperformed all

other techniques. A detailed review of our cross-validation results is

given in the supplementary data Section S1. Note that in for all eight

diseases, we performed two tests, in one of which we excluded those

similarity criteria that contain strong prior information about disease

genes, such as the ‘Disease’ and ‘PubMed’ category. Table 2 demon-

strates the significant differences in average ranks of the target genes

when literature information is excluded, suggesting that ToppGene

and Endeavour both significantly benefit from this prior onset gene in-

formation when ranking the target genes. The Supplementary data

Section S2 contains a detailed description of our results.

Another means for evaluating the performance of HyDRA algo-

rithms compared with that of ToppGene and Endeavour is to exam-

ine the receiver operating characteristic (ROC) curves of the

techniques. In this setting, we follow the same approach as used by

both ToppGene and Endeavour. Sensitivity is defined as the fre-

quency of tests in which prospect genes were ranked above a par-

ticular threshold position, and specificity as the percentage of

prospect genes ranked below this threshold. As an example, a sensi-

tivity/specificity pair of values 90/77 indicates that the presumably

correct disease gene was ranked among the top-scoring 100� 77

¼ 23% of the genes in 90% of the prioritization tests. The ROCs

plot the dependence between sensitivity and the reflected specificity,

and the area under the curve (AUC) represents another useful per-

formance measure. The higher the AUC and specificity, the better

the performance of the method. Endeavour reported 90/74 sensitiv-

ity/specificity values for their chosen set of test and training genes,

as well as an AUC score of 0.866. Similarly, ToppGene reported

90/77 sensitivity/specificity values and an AUC score of 0.916 for

Table 2. Cross-validation result of Endeavour, ToppGene and HyDRA methods for eight diseases

Disease No. onset

genes

ToppGene Lovasz-Bregman Hybrid

Borda

Hybrid

Kendall

Endeavour Lovasz-Bregman Hybrid

Borda

Hybrid

Kendall

Autism 40 7.275 11.2 9.75 6.85 17.96 19.3 17.78 16.9

Autism† 40 21.675 25.4 19.775 21.65 23.35 24.5 24.38 21.78

Breast cancer 10 4.6 7.1 12 2.5 14.4 15 12.5 15.7

Breast cancer† 10 6.9 17.8 8.1 7.1 16.6 12.8 15.5 17.8

Colorectal cancer 20 7.3 5.2 7.85 8.7 8.55 8.65 7.8 8.1

Colorectal cancer† 20 13.35 9.5 19.6 12.5 9.75 10.65 9.55 11.2

Endometriosis 43 6.46 8.63 10.63 7.74 5.3 6.37 4.81 5.65

Endometriosis† 43 9.53 9.76 15.84 9.7 6.12 7.63 6.86 6.6

Ischaemic stroke 44 5.61 7.25 9.25 6.05 6.18 7.3 7.07 6.09

Ischaemic stroke† 44 8.43 7.5 12.8 8.7 7.95 9.66 9.86 8.86

Leukemia 10 5.5 12 6.6 10.2 13.7 14.8 7.1 12.1

Leukemia† 10 20.8 22.8 24.3 20.5 19.5 19.9 16.6 21.3

Lymphoma 42 3.74 6.45 9.26 2.93 9.57 10.69 9 8.81

Lymphoma† 42 7.71 9.55 10.71 6.76 12.52 12.9 13.67 11.67

Osteoarthritis 41 6.44 6.51 13.54 5.41 5.56 6.32 7.46 6.29

Osteoarthritis† 41 8.73 8.32 14.1 8.02 6.41 7.41 6.51 7.22

Diseases without ‘†’ refer to results using all 18 similarity categories both in Endeavour and ToppGene. Diseases indexed by ‘†’ denote results which did not

use the ‘Human Phenotype, Mouse Phenotype, Pubmed, Drug, Disease’ similarity criteria in ToppGene. Similarly, for Endeavour, the indexing by ‘†’ corresponds

to exclusion of similarity criteria ‘Precalculated-Ouzounis, Precalculated-Prospectr, Text’ on Endeavour data. The scores describing the best average rank are

bolded and shaded.
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their tests of interest. Our specificity/sensitivity and AUC values are

listed in Table 3, with best AUC and Sensitivity/Specificity values

shaded in gray. Note that although the AUC values appear close in

all cases, the HyDRA methods have very low overall computational

complexity (Figs. 5 and 6).

4.2 Gene discovery
The genetic factors behind glioblastoma, the most common and ag-

gressive primary brain tumor, are still unknown. We study this dis-

ease, as well as meningioma and breast cancer, in the gene discovery

phase. Our choice is governed by the fact that few publications are

available pointing towards the causes of this form of brain cancer,

and by the fact that it is widely believed that the genetic base of this

disease is related to the genetic base of the Von Hippel-Lindau

(VHL), Li-Fraumeni (LF), and Turcot Syndromes (TS),

Neurofibromatosis (N) and Tuberous Sclerosis (TS) (Kyritsis et al.,

2009). Furthermore, recent findings (Pandey, 2014) indicate that

brain cancers and breast cancers share a common line of mutations

in the family of Immunoglobulin GM genes, and that the Human

cytomegalovirus puts patients at risk of both brain and breast

cancer.

Consequently, we used genes documented to be involved in glio-

blastoma as training genes for three discovery tests. In the first test,

for the suspect genes we selected a subset of 15 genes known to be

implicated in the VHL, LF, TS, N and TS syndromes. We subse-

quently ran Algorithm1 with l¼3, s¼15, n¼100, s¼3. In the se-

cond test, we selected 18 genes known to be involved in breast

cancer as suspect genes for glioblastoma, and run Algorithm1 with

l¼3, s¼18, n¼100, s¼3. Finally, we performed the same analysis

on suspect genes known to be involved in meningiomas, by setting

the parameters of iterative HyDRA gene discovery to l¼3, s¼19,

n¼100, s¼3. The results are shown in Table 4. Note that in our al-

gorithmic investigation, we used l¼3 (i.e. top-three) ranked genes,

since this parameter choice offered a good trade-off between the size

of the union of the top-ranked genes and the accuracy of the genes

produced by the HyDRA discovery methods. The number of suspect

genes was governed by the size of the available pool in OMIM/GAD

and was targeted to be roughly 20% of the size of the test set. Such a

percentage is deemed to be sufficiently high to allow for meaningful

discovery, yet sufficiently low to prevent routine gene identification.

Table 4 reveals a number of results currently not known from

the literature. The genes KRAS and CDH1, both implicated in breast

cancer and meningioma, as well as CCND1 involved in meningioma

(as well as in colorectal cancer) appear to be highly similar to genes

implicated with glioblastoma. KRAS is a gene encoding for the K-

Ras protein that is involved in regulating cell division, and hence an

obvious candidate for being implicated in cancer. On the other

hand, CDH1 is responsible for the production of the E-cadherin pro-

tein, whose function is to aid in cell adhesion and to regulate trans-

mission of chemical signals within cells, and control cell maturation.

E-cadherin also often acts as a tumor suppressor protein. GeneCards

reveals that the CCND1 gene is implicated in altering cell cycle pro-

gression, and is mutated in a variety of tumors. Its role in glioma

tumorogenesis appears to be well documented (Buschges et al.,

1999), but surprisingly, neither KRAS nor CDH1 nor CCND1 are

listed in the OMIM/GAD database as potential glioblastoma genes.

Another interesting finding involves genes ranked among the top

three candidates, but not identified as ‘suspect’ genes. For instance,

according to GeneBank, GSTM2 regulates an individual’s suscepti-

bility to carcinogens and toxins and may suggest glioblastoma being

in part caused by toxic and other environmental conditions; KAAG1

appears to be implicated with kidney tumors, while TP73 belongs to

the p53 family of transcription factors and is known to be involved

in neuroblastoma.

5 Discussion

We start by discussing the results in Table 2. The first observation is

that the Lovász-Bregman method performs worse than any other ag-

gregation method. This finding may be attributed to the fact that the

p-values have a large span, and small values may be ‘masked’ by

larger ones. Scaling all p-values may be a means to improve the per-

formance of this technique, but how exactly to accomplish this task

remains a question.

In almost all cases, except for Leukemia and Lymphoma, the

average rankings produced by ToppGene and the Weighted Kendall

distance appear to be almost identical. But average values may be

misleading, as individual rankings of genes may vary substantially

between the methods, as can be seen from the supplementary mater-

ial. It is due to this reason that we recommend merging lists

Table 3. AUC and sensitivity/specificity values for ToppGene, Endeavour and HyDRA rankings, pertaining to diseases listed in

table 2 using all criteria

ToppGene Lovasz-

Bregman

Hybrid

Borda

Hybrid

Kendall

Endeavour Lovasz-

Bregman

Hybrid

Borda

Hybrid

Kendall

AUC 0.951 0.93 0.911 0.947 AUC 0.908 0.899 0.918 0.91

Sensitivity/Specificity 90/84 90/75 90/75 90/84 Sensitivity/specificity 90/69 90/63 90/79 90/72

Fig. 5 Cross-validation results: ROC curves for disease listed in table 2 using

all criteria and Endeavour data.

Fig. 6. Cross-validation results: ROC curves for disease listed in table 2 using

all criteria and ToppGene data.
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generated by different methods as best aggregation practice.

Another important observation is that HyDRA methods have sig-

nificantly lower computational complexity than ToppGene and es-

pecially, Endeavour, and hence scale well for large datasets.

Another finding is the fact that the good performance of

ToppGene and all other methods largely depends on including prior

literature on the genes into the aggregation process. We observed situ-

ations where the rank of an element dropped by roughly 90 positions

when this prior was not available. This implies that for gene discov-

ery, it is risky to rely on any single method, and it is again good prac-

tice to merge top-ranked entries generated by different methods.

Finally, it is not clear how to optimally choose the number of training

genes for a given set of test genes, or vice versa. Choosing more

training genes may appear to be beneficial at first glance, but it creates

a more diverse pool of candidates for which some similarity criteria

will inevitably fail to identify the right genes. In this case, we recom-

mend using the Weighted Kendall to eliminate outliers, and in add-

ition, we recommend the use of a fairly large TvB scaling parameter.
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