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Information Theory

 Developed by Claude Shannon, 
motivated by problems in 
communications

 A Mathematical Theory of 
Communication,” The Bell System 
Tech J, 1948. Cited ≥ 100,000 times

 Provides a way to quantify 
information suitable for 
engineering applications

 Relies on probability, stochastic 
processes

 Applications in communications, 
data storage, statistics, machine 
learning



Information Theory

 Provides a way to quantify 
information independent of 
representation

 Quantifies mutual information, the 
amount of information one signal 
has about another

 Limits on the shortest 
representation of information 
without losing accuracy

 Trade-off between accuracy and 
representation length

 Limits on the amount of 
information that can be 
communicated

Beyond communication and data storage

(Elements of Inf Theory, Cover and Thomas)



Quantifying information

 Which statement carries more information?

 Tomorrow, the sun will rise in the east.

 P = 1 no information transferred.

 Tomorrow, it will rain in Seattle.

 P = 158/365 = .43, rather likely, could guess either way

 Tomorrow, it will rain in Phoenix.

 P = 36/365 = .1, rather unlikely, significant info

 Tomorrow, Betsy DeVos will call you and explain the central limit 
theorem.

 P = 0 – this would be a major story!

 Conclusion: Mathematical definition of information content is tied to 
(only) probability



Properties of an information 

measure

 𝐼 𝑥 : the information in statement 𝑥

 Desired properties:

 𝐼 𝑥 ≥ 0

 Decreasing function of probability

 If 𝑝 𝑥 → R then 𝐼 𝑥 → 0

 If 𝑥 and 𝑦 are results of independent events, then 𝐼 𝑥 and 𝑦 = 𝐼 𝑥 + 𝐼(𝑦)

 Pr(Virginia beats Florida State & Duke beats UNC) = Pr(Virginia beats Florida 

State) × Pr(Duke beats UNC)

 𝐼(Virginia beats Florida State & Duke beats UNC) = 𝐼(Virginia beats Florida 

State) + 𝐼(Duke beats UNC)



Self-information

 There is a unique function 

satisfying these conditions

𝐼 𝑥 = log
1

𝑝 𝑥

 The base of the log is arbitrary and 

determines the unit

 Base 2 gives the information in bits 

(term coined by Shannon)



Independence from representation

 Our measure of information does not depend on representation

 Both tables carry the same (amount of) information

Mar. 24 25 26 27 28 29 30

Cloudy Rainy Cloudy Sunny Sunny Cloudy Rainy

Mar. 24 25 26 27 28 29 30



Entropy: average information

 Information is defined in the context of a random event with 

uncertain outcomes

 A property of random variables and random processes

 The entropy of a random variable 𝑋 is 

𝐻 𝑋 = 𝐸 𝐼 𝑋 = 𝐸 log
1

𝑝(𝑋)
= ∑𝑝(𝑥) log

1

𝑝(𝑥)

 Entropy: the amount of information generated by a source, on 

average.



Entropy: average information

 Entropy of rolling a die: 

෍

𝑖=1

6

𝑝 𝑖 log
1

𝑝 𝑖
= 6 ×

1

6
log

1

1/6
= log 6 = 2.58 𝑏𝑖𝑡𝑠

 Entropy is a measure of uncertainty/predictability

 Entropy is non-negative (since self-information is non-negative)

 For a random variable 𝑋 that takes 𝑀 values, 

𝐻 𝑋 ≤ log𝑀



Binary Entropy
 Experiment with two outcomes with probabilities 𝑝 and 1 − 𝑝

𝐻 𝑝 = 𝑝 log
1

𝑝
+ 1 − 𝑝 log

1

1 − 𝑝

 Predictability: Weather in Phoenix is more predictable than Seattle



Why “Entropy”?

 My greatest concern was what to call it. I thought of calling it 

‘information,’ but the word was overly used, so I decided to call it 
‘uncertainty.’ When I discussed it with John von Neumann, he had a 

better idea. Von Neumann told me, ‘You should call it entropy, for 

two reasons. In the first place your uncertainty function has been 

used in statistical mechanics under that name, so it already has a 

name. In the second place, and more important, no one really 

knows what entropy really is, so in a debate you will always have the 

advantage.’

Claude Shannon, Scientific American (1971), volume 225, page 180.



Data representation

 We store data as a sequence of bits using a code

 ASCII for representing English text

 𝐴 → 01000001, 𝐵 → 01000010,…

 Bitmap for images

 Storing a genome:

 𝐴 → 00, 𝐺 → 01, 𝐶 → 10, 𝑇 → 11

 The average number of bits per symbol is the average code length

 For a random variable that can take 𝑀 values, need ≤ log𝑀 bits

 The entropy is also bounded by log𝑀



Data compression

 Can we do better than log𝑀, without loosing information?

 Which is easier to store?

 Weather in Phoenix: RSSSSSRSSSSSSSSSSSSSSSSSRSSSS… 

 Weather in Seattle:   RSRSSRRSRSRSRSSSSRSSRSRRRRSSR… 

 Rothko vs Pollock



Data compression

 What is the average length of the shortest representation of a 

random variable (source of information)?

 Example: A genome with non-uniform symbol probabilities:

 The average code length is 2 bits/symbol

A C G T

Probability 1/2 1/4 1/8 1/8

Code 00 01 10 11



Data compression

 What if we choose representation with length equal to self-

information, log 1/𝑝𝑖?

 Average code length: 
1

2
× 1 +

1

4
× 2 +

1

8
× 3 +

1

8
× 3 =

7

4
= 𝐻(𝑋)

 If the length of the representation for each symbol is equal to its self-

information, the average code length equals entropy

A C G T

Probability 1/2 1/4 1/8 1/8

Code 0 10 110 111

Information log 2 = 1 log 4 = 2 log 8 = 3 log 8 = 3



Data compression

 Shannon coding: represent a symbol with probability of 𝑝 with a 

sequence of length log(1/𝑝)

 log(1/𝑝) < log(1/𝑝)+1

 Achieves average code length < 𝐻 𝑋 + 1

 Shannon showed that it’s not possible to do better than entropy

 Shannon’s source coding theorem: the average code length 𝐿 of 

the optimum code satisfies:
𝐻 𝑋 ≤ 𝐿 < 𝐻 𝑋 + 1



Huffman codes

 Shannon codes, while close to entropy, are not necessarily optimal

 To achieve optimality, each bit must divide the probability space to 

two nearly equal halves

A C G T

Prob 1/2 1/4 1/8 1/8

Code 0 10 110 111

0

0

01

1

1

A

C

G

T

C/G/T

G/T



Huffman codes

 Shannon and others, including Huffman’s professor, Fano, tried to 

find an optimal algorithm but were not successful

 Fano gave students a choice of final exam or a term paper solving 

given problems

 Huffman invented an algorithm for finding optimal codes

 Huffman’s algorithm builds the tree in a bottom-up approach, grouping 

smallest probabilities to create super-nodes

 The average code length for the Huffman code is still at least as 

large as the entropy



Relative Entropy

 Suppose the true distribution of a source 𝑋 is given by 𝑝

 Not knowing this true distribution, we construct a code based on a 

distribution 𝑞

 What is the inefficiency caused by this mismatch?

 Average code length with the true and assumed distributions:

෍

𝑥

𝑝 𝑥 log
1

𝑝(𝑥)
, ෍

𝑥

𝑝 𝑥 log
1

𝑞(𝑥)

 The difference is the relative entropy (aka Kullback-Leibler

divergence)

𝐷(𝑝| 𝑞 =෍

𝑥

𝑝 𝑥 log
𝑝(𝑥)

𝑞(𝑥)



Relative Entropy

 Relative entropy is used as a measure of difference between 

distributions

 𝐷(𝑝| 𝑞 = 0 if and only if 𝑝 = 𝑞

 Relative entropy is used as loss function in machine learning

 Suppose we are interested in estimating an unknown distribution 𝑝

 We choose a simple class of distributions 𝑄

 We find 𝑞 ∈ 𝑄 that minimizes 𝐷(𝑝||𝑞)

 This results in a distribution 𝑞 that does not under-estimate 𝑝

 Avoids assigning zero probability where 𝑝 𝑥 > 0



Relative Entropy

 Could also choose to minimize 𝐷(𝑞| 𝑝 → different answer

 Tries to not over-estimate 𝑝

𝐷(𝑞| 𝑝 =෍

𝑥

𝑞(𝑥) log
𝑞(𝑥)

𝑝(𝑥)

 Avoids assigning probability where 𝑝 𝑥 = 0



Cross-entropy

 Recall: 

𝐷(𝑝| 𝑞 =෍

𝑥

𝑝 𝑥 log
1

𝑞 𝑥
−෍

𝑥

𝑝 𝑥 log
1

𝑝 𝑥

 𝑞 only appears in the first term, called cross-entropy

𝐻(𝑝| 𝑞 =෍

𝑥

𝑝 𝑥 log
1

𝑞(𝑥)

 Minimizing relative entropy is the same as minimizing cross-entropy



Joint entropy

 For two random variables 𝑋 and 𝑌, their joint entropy is 

𝐻 𝑋, 𝑌 = 𝐸 log
1

𝑝(𝑋, 𝑌)
= ∑𝑝 𝑥, 𝑦 log

1

𝑝(𝑥, 𝑦)

 𝑋 and 𝑌 are independent if and only if

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌)

 Example: 𝑋 = 𝐵𝑒𝑟(1/2), 𝑌 = 𝐵𝑒𝑟(1/2), 𝑍 = 𝑋 + 𝑌

𝐻 𝑋 = 𝐻 𝑌 = log 2 = 1, 𝐻 𝑍 = 1.5
𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 = 2 = 𝐻 𝑋, 𝑍 ≠ 𝐻 𝑋 + 𝐻(𝑍)

X Y Z P

0 0 0 ¼

1 0 1 ¼

0 1 1 ¼

1 1 2 ¼



Conditional entropy

 Conditional entropy of X given Z

𝐻 𝑋 𝑍 =෍

𝑧

𝑝 𝑧 𝐻(𝑋|𝑍 = 𝑧) =෍

𝑧

𝑝 𝑧 ෍

𝑥

𝑝(𝑥|𝑧) log
1

𝑝(𝑥|𝑧)

 The uncertainty left in 𝑋 after we learn 𝑍

 Previous example:

𝐻 𝑋 𝑍 =
1

4
× 0 +

1

2
× 1 +

1

4
× 0 =

1

2
, 𝐻 𝑍 𝑋 = 1

 Relationship between joint and conditional entropies

𝐻 𝑋, 𝑍 = 𝐻 𝑋 + 𝐻(𝑍|𝑋)

X Y Z P

0 0 0 ¼

1 0 1 ¼

0 1 1 ¼

1 1 2 ¼



Mutual Information

 𝐼(𝑋; 𝑌): Mutual information 

between two random variables

 The reduction of uncertainty 

about X due to knowledge of Y

 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌

 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)
H(X) H(Y)

I(X;Y) H(Y|X)H(X|Y)

H(X,Y)



Mutual Information

 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌

 Example:

H(X) H(Z)

.5 bit 1 bit.5 bit

X Y Z=X+Y P

0 0 0 ¼

1 0 1 ¼

0 1 1 ¼

1 1 2 ¼

𝐼 𝑋; 𝑍 = 1 −
1

2
= 1.5 − 1 =

1

2𝐼 𝑋; 𝑌 = 1 − 1 = 0

H(X) H(Y)

1 bit1bit



Entropy ≠ (Mutual) Information

 Example: cable news (high entropy, little mutual information to news)



Channel Capacity

 Communication channel

 Due to noise, the input and output are only statistically related

 Shannon Channel Coding Theorem:

 The maximum information rate that can be carried by a communication 
channel, is the maximum mutual information between its input and 
output



Channel Capacity

 Binary symmetric channel → Capacity = 1 − 𝐻(𝑒)

1 − 𝑒

𝑒

𝑒

1 − 𝑒
00

1 1



Data processing inequality

 Random variables X, Y, Z form a Markov chain if X and Z are 

conditionally independent given Y

 Denoted 𝑋 → 𝑌 → 𝑍

 The data processing inequality: If 𝑋 → 𝑌 → 𝑍, then 𝐼 𝑋; 𝑍 ≤ 𝐼(𝑋; 𝑌).

 No processing, whether deterministic or random, can increase the 

amount of information that Y has about X

Nature

X

Data

Y

Processed Data

Z

observation processing



Sufficient statistics

 Consider 

 {𝑝𝜃}: a family of distributions indexed by 𝜃

 X: a sample from this distribution

 T(X): any statistic (function of the sample), e.g., sample mean

 Then 𝜃 → 𝑋 → 𝑇(𝑋)

 𝐼 𝜃; 𝑇 𝑋 ≤ 𝐼(𝜃; 𝑋)

 If 𝐼 𝜃; 𝑇 𝑋 = 𝐼(𝜃; 𝑋), then 𝑇(𝑋) is a sufficient statistic

 The condition is equivalent to 𝜃 → 𝑇 𝑋 → 𝑋

 X is independent of 𝜃 given 𝑇(𝑋)

 The sufficient statistic contains all the information in X about 𝜃



Sufficient Statistics

 𝑋𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃), 𝑋 = 𝑋1, … , 𝑋𝑛 , 𝑆 = ∑𝑋𝑖

 𝜃 → 𝑋 → 𝑆

 𝜃 → 𝑆 → 𝑋

 Given the number of ones, 𝑋 is independent of 𝜃 since all sequences 

with 𝑆 ones are equally probable, with probability 1/ 𝑛
𝑆

 𝑋𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜃, 1), 𝑋 = 𝑋1, … , 𝑋𝑛 , ത𝑋 = ∑𝑖𝑋𝑖 /𝑛 is a sufficient statistic

 𝑋𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0, 𝜃], 𝑋 = 𝑋1, … , 𝑋𝑛 , 𝑀 = max𝑋𝑖 is a sufficient statistic

 Minimal sufficient statistic: a SS that is a function of every other SS



Fano’s inequality

 We know a random variable 𝑌 and want to estimate 𝑋

 How is the probability of error affected by 𝐻(𝑋|𝑌)?

 Best case: 𝑋 is a function of 𝑌: 𝐻 𝑋 𝑌 = 0

 Worst case: X and Y are independent: 𝐻 𝑋 𝑌 = 𝑋

 Let the estimate be ෠𝑋 = 𝑔(𝑌), a (possibly random) function of 𝑌

 𝑃𝑒 = Pr( ෠𝑋 ≠ 𝑋), 𝑀: number of possible values of 𝑋

 Fano’s inequality: 𝐻 𝑃𝑒 + 𝑃𝑒 log𝑀 ≥ 𝐻(𝑋|𝑌) and 

𝑃𝑒 ≥
𝐻 𝑋 𝑌 − 1

log𝑀



Fano’s inequality

 Special case: 𝑃𝑒 = 0 ⇒ 𝐻 𝑋 𝑌 = 0

 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

 𝐻 𝑌 ≥ 𝐻(𝑋)

 On average, how many pairwise comparisons do we need to sort a 
list of size 𝑛

 𝑌: the results of pairwise comparisons

 𝑀: average number of comparisons

 We need to identify one permutation among 𝑛!

 𝑀 ≥ 𝐻 𝑌 ≥ 𝐻 𝑋 = log𝑛! ≃ 𝑛 log𝑛

 Independent of how we choose items to compare



Entropy rate

 Consider the sequence:

 000000011110000001111111110000011111110000001111

 What is the entropy per symbol?

 𝑝0 ≃ 𝑝1 ≃
1

2
⇒ 𝐻 ≃ 1 𝑏𝑖𝑡𝑠

 We are ignoring the dependence between symbols

 Probability distribution for the next symbol depends on the previous symbol

 𝑃 𝑋𝑖 = 1 𝑋𝑖−1 = 1 = 0.9

 𝑃 𝑋𝑖 = 0 𝑋𝑖−1 = 0 = 0.9

 This is called a Markov chain

 What is the entropy rate ℎ, amount of information in each symbol?



Entropy Rate of Markov Chains

 What is the entropy rate of a two state Markov chain?

 ℎ = 𝐻 𝑋𝑖 𝑋𝑖−1 = ∑Pr 𝑋𝑖−1 = 𝑥𝑖−1 𝐻(𝑋𝑖|𝑋𝑖−1 = 𝑥𝑖−1)

 Example: two-state Markov chain

 𝐻 𝑋𝑖 𝑋𝑖−1 = 0 = 𝐻(𝛼)

 𝐻 𝑋𝑖 𝑋𝑖−1 = 1 = 𝐻(𝛽)

 Pr 𝑋𝑖−1 = 0 =
𝛽

𝛼+𝛽

 Pr 𝑋𝑖−1 = 1 =
𝛼

𝛼+𝛽

 ℎ =
𝛼

𝛼+𝛽
𝐻 𝛼 +

𝛽

𝛼+𝛽
𝐻 𝛽

Credit: Elements of Inf Theory, Cover and Thomas



Entropy rate

 Markov chains can have memory larger than 1 symbol

 Some processes, such as English text can only be approximated as a Markov 
chain

 From Shannon’s original paper:

 0th order: XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD 
QPAAMKBZAACIBZLHJQD

 1st order: OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA 
NAH BRL

 4th order: THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED CODE, 
ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO HOCK BOTHE MERG.

 2nd order word model: THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT 
THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT 
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED

 0 order entropy = log 27 = 4.76 bits

 4th order entropy = 2.8 bits



Thank you

 References:

 “Elements of information theory,” Thomas Cover, Joy Thomas

 “Information Theory, Inference, and Learning Algorithms,” David 

MacKay


