
Chapter 11

Inference in Graphical Models

11.1 Introduction

Inference refers to drawing conclusions about unknown quantities based on observations and a model. In the
context of graphical models assume, our goal is to learn about a set of query nodes given observed nodes.

For example, consider the following graph with nodes for background information about a patient (e.g., diet,
exercise, genetics, etc.), diseases (diabetes, hypertension, etc.), and symptoms/test results (blood pressure,
etc). Our goal is assign probabilities to disease based on our observations. Alternatively, we may be interested
in identifying the disease that is most likely.

Background

Diseases

Symptoms

? ? ?

In such a graph, we deal with three types of nodes, evidence (observed) nodes, xE , query nodes, xQ, and
other nodes, xO.

Without having made any observations, we can find the probability of the query nodes through marginaliza-

tion:
p(xQ) =

X

xO,xE

p(xQ, xO, xE),

and with observations, through conditioning :

p(xQ|xE) /
X

xO

p(xQ, xO, xE).

Since we can view the latter case as doing summation over xE that only consists of a single set of values,
from this point on, we will only consider marginalization. Note that we need to compute

P
xO

p(xQ, xO, xE)
for all values of xQ to be able to find p(xQ|xE).
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11.2 The Elimination Algorithm

We need to find
p(x4) =

X

x1,x2,x3,x5

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)p(x5|x4).

Assume each node can take k different values. In the naive approach, we need to compute and add O(k4)
terms.

We could eliminate the nodes in different orders:

p(x4) =
X

x1

X

x2

X

x3

X

x5

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)p(x5|x4)

=
X

x1

X

x2

X

x3

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)
X

x5

p(x5|x4)

=
X

x1

X

x2

X

x3

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

=
X

x1

X

x2

p(x1)p(x2|x1)
X

x3

p(x3|x2)p(x4|x3)

=
X

x1

X

x2

p(x1)p(x2|x1)µ(x2, x4)

=
X

x1

p(x1)
X

x2

p(x2|x1)µ(x2, x4)

=
X

x1

p(x1)µ(x1, x4)

= p(x4)

The computational complexity is O(k2), i.e., we need of the order of k2 computations. In particular, computing
µ(x2, x4) needs to be done for k different values of x2 and each of these requires computing and adding k
terms, one for each possible value of x3.

Note that in Bayesian networks, we can ignore downstream nodes since their probability marginalizes to 1
(but not in MRFs).

We could also choose the following ordering:

p(x4) =
X

x1

X

x3

X

x2

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

=
X

x1

X

x3

p(x1)p(x4|x3)
X

x2

p(x2|x1)p(x3|x2)

=
X

x1

X

x3

p(x1)p(x4|x3)µ(x1, x3)

=
X

x1

p(x1)
X

x3

p(x4|x3)µ(x1, x3)

=
X

x1

p(x1)µ(x1, x4)

= p(x4).

Here, computing µ(x1, x3) has complexity O(k3).
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More generally, for a Markov chain with n nodes, the complexity is O(nk2) for computing p(xn). But with
the naive approach it is O(kn).

The problem of finding the best ordering for elimination is NP-hard (i.e., computationally difficult) for general
graphs.

Now let us find p(x0|x4) in the following network:

x0 x1

x2

x3

x4

x5

We have

p(x0|x4) /
X

x1,x2,x3

p(x0)p(x1|x0)p(x2|x1)p(x3|x1)p(x4|x2, x3)

=
X

x1,x3

p(x0)p(x1|x0)p(x3|x1)
X

x2

p(x2|x1)p(x4|x2, x3)

=
X

x1,x3

p(x0)p(x1|x0)p(x3|x1)µ(x1, x3, x4)

=
X

x1

p(x0)p(x1|x0)
X

x3

p(x3|x1)µ(x1, x3, x4)

=
X

x1

p(x0)p(x1|x0)µ(x1, x4)

= p(x0)
X

x1

p(x1|x0)µ(x1, x4)

= p(x0)µ(x0, x4).

The complexity is dominated by µ(x1, x3, x4), which is O(k3), assuming each node can take on k values.

11.3 The Sum-Product Algorithm

The sum-product algorithm, also known as belief propagation and sum-product message passing, provides a
simple way of doing exact inference on trees. It is also commonly used on graphs that are not trees since it
often provides good approximations.

We need to clarify what we mean by trees. For Markov random fields, the algorithm works on trees, but for
Bayesian networks, it works for graphs whose equivalent MRF (the moralized graph) is a tree. In particular,
no node can have more than one parent. Given the straightforward equivalence between these two categories,
we only consider Markov random field trees.

Consider the the following MRF, where we are interested in p(x4), with

p(x4
1) /  (x1, x3) (x2, x3) (x2) (x3, x4) (x4) (x4, x5)
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x3

x1

x2

x4 x5

Let’s look at this graph as a rooted tree,

x4

x3

x1 x2

x5

and perform elimination starting from the leaves to the roots:

p(x4) /
X

x1,x2,x3,x5

 (x1, x3) (x2, x3) (x2) (x3, x4) (x4) (x4, x5)

=
X

x3

 (x3, x4) (x4)

 
X

x1

 (x1, x3)

! 
X

x2

 (x2, x3) (x2)

! 
X

x5

 (x4, x5)

!

=
X

x3

 (x3, x4) (x4) m13(x3) m23(x3) m54(x4)

=  (x4)m54(x4)
X

x3

 (x3, x4) m13(x3) m23(x3)

=  (x4)m54(x4)m34(x4)

(11.1)

We can view this computation as being done on each node and then messages being passed to neighbors:

x4

x3

x1 x2

x5

m
13
(x

3
)

��
��
�!

m
34
(x

4
)

��
��
�!

m
23 (x

3 )

 �����

m
54 (x

4 )

 �����

Farzad Farnoud 107 University of Virginia



Estimation and Statistical Learning CHAPTER 11. INFERENCE IN GRAPHICAL MODELS

where

m13(x3) =
X

x1

 (x1, x3),

m23(x4) =
X

x2

 (x2, x3) (x2),

m54(x4) =
X

x5

 (x4, x5),

m34(x4) =
X

x3

 (x3, x4) m13(x3) m23(x3).

and then at the root, we can find p(x4) as

p(x4) /  (x4)m54(x4)m34(x4).

Recall that this also works for conditioning. Specifically, if we are interested in the conditional probability
p(x4|x3 = a), we would compute

m34(x4) =  (x3 = a, x4) m13(a) m23(a),

p(x4) /  (x4)m54(x4)m34(x4).

We can state the sum-product algorithm for a rooted tree as follows. At each node xj with parent xk,

• Product step: After receiving messages mij(xj) from all children xi of xj , compute the product of all
messages and any potential functions containing xj ,

 (xj) (xj , xk)
Y

i

mij(xj).

Note that not all potentials are always present.

• Sum step: Sum over all possible values of xj to produce the message

mjk(xk) =
X

xj

 (xj) (xj , xk)
Y

i

mij(xj), (11.2)

and send to xk.

A critical point in the correctness of the sum-product algorithm is that the messages received by each node
are functions of the value of that node. This is easy to see by induction. After the product step, we get
a function of both the current node xj and its parent xk. The sum eliminates the current node and so the
parent node xk receives a message that is only a function of xk.

Complexity of computing each message: Suppose each node can take on K different values, namely {1, 2, . . . , K}.
So the sum in (11.2) contains K terms. Furthermore, mjk(xk) needs to be computed for xk = 1, 2, . . . , K.
We can imagine a vector

mjk =

0

BBB@

mjk(1)
mjk(2)

...
mjk(K)

1

CCCA

being sent to the node xk. So the complexity at each node is O(K2) and for n nodes the complexity is
O(nK2).
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Computing marginals at all nodes. We can easily extend this algorithm to computing all marginals
rather than a single node. We note that the messages sent by the nodes do not depend on the location of the
root. Each node sends a message when it receives messages from all but one of its neighbors. We can extend
this by not sending a message only once, but sending a message to each neighbor based on the messages
received by the other neighbors:

x3

x1

x2

x4 x5

m
13 (x

3 )

�����!
 �����
m
31 (x

1 )
m34(x4)�����!
 �����
m43(x3)

m
32
(x

2
)

 �
��
��

��
��
�!

m
23
(x

3
)

m54(x4) �����
�����!
m45(x5)

Here the order of messages is color-coded: 1, 2, 3. We can now find the marginal at each node. For example,

p(x2) / m32(x2) (x2),

p(x3) / m13(x3)m23(x3)m43(x3).

Example 102. An example for the sum-product algorithm is given at the end of the document.

11.4 The Max-Product Algorithm

The max-product algorithm is used to identify the configuration that has the maximum probability. Examples
include part-of-speech tagging, voice recognition, decoding (communication), and image denoising. The last
example is shown below:

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x11 y12 y13 y14 y15

y21 y22 y23 y24 y25

y31 y32 y33 y34 y35

where xij are true image pixels and yij are observed pixels, e.g., from a camera. Our goal is to find

arg max
x

p(x, y).

Note that the local maximum-probability configuration does not necessarily agree with the global maximum-
probability configuration. As an example, consider
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p(x1, x2) x1 = 0 x1 = 1
x2 = 0 .3 .4
x2 = 1 .3 0

We have

arg max
x1,x2

p(x1, x2) = (1, 0)

arg max
x1

p(x1) = arg max
x1

(p(x1, x2 = 0) + p(x1, x2 = 1)) = 0.

To see the max-product algorithm, suppose we want to find

arg max
x5
1

p(x5
1)

for the tree given in the previous section. To solve this problem, let us start with solving

max
x5
1

p(x5
1)

We proceed similar to (11.1). For clarity, we make the partition function Z explicit, but we don’t actually
need to find it. We replace each summation in the previous derivation with max and write:

max p(x5
1) = max

x1,x2,x3,x4,x5

Z (x1, x3) (x2, x3) (x2) (x3, x4) (x4) (x4, x5)

= Z max
x4

max
x3

 (x3, x4) (x4)

✓
max

x1

 (x1, x3)

◆✓
max

x2

 (x2, x3) (x2)

◆✓
max

x5

 (x4, x5)

◆

= Z max
x4

max
x3

 (x3, x4) (x4) m13(x3) m23(x3) m54(x4)

= Z max
x4

 (x4)m54(x4) max
x3

 (x3, x4) m13(x3) m23(x3)

= Z max
x4

 (x4)m54(x4)m34(x4)

This is the same as the sum-product algorithm, except that we take the max of product terms. We can again
view this as message-passing, but using max instead of sum, with the following messages:

m13(x3) = max
x1

 (x1, x3),

m23(x4) = max
x2

 (x2, x3) (x2),

m54(x4) = max
x5

 (x4, x5),

m34(x4) = max
x3

 (x3, x4) m13(x3) m23(x3).

If we have Z, we can find the maximum probability. But we are interested in the values x⇤ of x that achieve
this maximum probability (also we don’t have Z). To find x⇤, we simply need to keep track of which values
of xi maximize the message. Specifically, for a message mij(xj), we should know for each value of xj what
value of xi was used to obtain the maximum value of the message. Then, when we find what value of x4

maximizes the probability at the last step, we backtrack and find all the other xis.

11.5 Sum-product Example
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